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Abstract

This paper develops a framework for studying the optimal product range choice

of a multiproduct intermediary when consumers demand multiple products. In

the optimal product selection, the intermediary uses exclusively stocked high-value

products to increase store tra¢ c, and at the same time earns pro�t mainly from

non-exclusively stocked products which are relatively cheap to buy from upstream

suppliers. By doing this the intermediary can earn strictly positive pro�t, including

in situations where it does not improve e¢ ciency in selling products. A linkage

between product selection and product demand features such as size and shape is

established. It is also shown that relative to the social optimum, the intermediary

tends to be too big and stock too many products exclusively.
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1 Introduction

Many products are traded through intermediaries. A leading example is that of retailers,

who buy up products from manufacturers and resell them to consumers. Choosing which

products to stock is an important decision for retailers. Consumers are usually interested

in buying a basket of products, but �nd it costly to shop around and so tend to buy from

a limited number of retailers whose product ranges closely match their needs. However,

at the same time retailers are often constrained in how many products they can sell,

for example due to limited stocking space or the fact that stocking too many products

can make the in-store shopping experience less pleasant.1 Moreover products di¤er in

their desirability for consumers and pro�tability for sellers, and their demands can be

interdependent in a multiproduct environment. This further complicates the product

selection problem.

Very much related to the stocking problem is the issue of exclusivity. In particular, in

order to make themselves more attractive to consumers, retailers are increasingly o¤ering

exclusive products that are not available for purchase elsewhere. They do this either by

making large investments in their own private brands, or by paying manufacturers for

exclusive rights to sell their products. For example in 2009, US departments stores such

as Macy�s and J.C. Penney generated over 40% of their sales from exclusive products.2

Surprisingly, there are very few papers which study a retailer�s optimal choice of

product range and product exclusivity. (This contrasts with the voluminous literature

on other aspects of a retailer�s problem, such as pricing and location choice.) Our paper

seeks to �ll this gap by developing a multiproduct intermediary framework which can help

study these issues in a tractable way. Our paper makes several contributions. Firstly, we

provide a new rationale for the existence of intermediaries. In particular we show that

when consumers have multiproduct demand, a multiproduct retailer can use exclusivity

to enter a market and make strictly positive pro�t, even if it is no more e¢ cient in selling

products than the smaller sellers which it displaces. Secondly and most importantly,

we characterize the retailer�s optimal product selection. Speci�cally, we show how all

1Even large retailers like Walmart face such constraints. Many consumers have to go to smaller stores

to buy some hard-to-�nd products. (See http://goo.gl/MV6FRi for some evidence on this.)
2See http://goo.gl/lfS9QP for further details. Exclusivity is also common in other parts of the retail

market. For instance Home Depot has many exclusive brands such as American Woodmark in cabinets,

and Martha Stewart in outdoor furniture and indoor organization. Target is well-known for o¤ering

exclusive brands in apparel and home goods. Many high-end fashion stores also sell unique colors or

versions of certain labels.
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information contained in a product�s demand curve can be represented by a simple two-

dimensional su¢ cient statistic, which in turn determines whether the retailer chooses to

stock that product, and whether it does so exclusively. We also show how these choices

can be understood in terms of simple properties of the product�s demand curve, such as

its size and shape. Thirdly, we show that a pro�t-maximizing retailer tends to be too big

and stock too many exclusive products relative to the social optimum.

In more detail, Section 2 introduces our main model in which a continuum of manufac-

turers each produces a di¤erent product. Consumers view these products as independent

and are interested in buying all of them, although di¤erent products are allowed to have

di¤erent demands. A manufacturer�s product can be sold either through a single-product

(specialist) store, a multiproduct (generalist) retailer, or both. The single-product retailer

can be interpreted as either the manufacturer�s own retail outlet or a completely indepen-

dent store, and both interpretations give rise to the same results in our model. We choose

to frame the paper in terms of the former interpretation, given that with development of

e-commerce manufacturers are increasingly selling their products direct to consumers.3

The multiproduct retailer o¤ers to compensate manufacturers in exchange for the right

to sell their products, and as part of this can demand exclusive sales rights. We also allow

for the possibility that the retailer has a stocking constraint. Consumers are aware of

who sells what, but have to pay a cost to learn a �rm�s price(s) and buy its product(s).

The cost of searching the intermediary is (weakly) increasing in the number of products it

stocks, consistent for example with the idea that larger retailers are located further from

consumers, or o¤er a worse instore shopping experience. Consumers also di¤er in their

search costs, such that in equilibrium some end up buying more products than others.

Since the focus of our paper is product range choice, we intentionally simplify sell-

ers�pricing problems. In particular we assume that the intermediary can o¤er two-part

tari¤ contracts to manufacturers. We then prove that irrespective of the market struc-

ture, each supplier of a given product always charges the usual monopoly price.4 This

enables us to study product range choice in a tractable way, because it allows us to

3A 2016 Forbes article reports: �The number of manufacturers selling directly to consumers is expected

to grow 71% this year to more than 40% of all manufacturers. And over a third of consumers report they

bought directly from a brand manufacturer�s website last year�. (See https://goo.gl/29uWSE) Along

the same lines, a 2017 report by the European Commission states that �many retailers... [now �nd]

themselves competing against their own suppliers.�(See p. 288 of https://goo.gl/Xg71n2)
4Intuitively, with two-part tari¤s the intermediary can get a wholesale price at the marginal cost and

avoid double marginalization, and with search frictions the logic of Diamond (1971) implies no price

competition even if a product is sold by both its manufacturer and the intermediary.
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summarize all information on a product�s cost and demand characteristics via a simple

two-dimensional statistic (�; v), where � represents a product�s monopoly pro�t and v

represents its monopoly consumer surplus. The intermediary�s problem is then to choose

a set of points within (�; v) space that it will stock exclusively, and another set of points

which it will stock non-exclusively.

In Section 3 we �rst solve a special case of the model in order to highlight some of

the main economic forces at work. In particular we consider the situation in which the

intermediary can stock as many products as it likes, but is restricted to using exclusive

contracts, and o¤ers no economies of search (i.e. the cost of searching the intermediary is

the same as searching all of the manufacturers whose products it sells). We �rst prove that

the intermediary earns strictly positive pro�t, and so will be active despite not improving

search e¢ ciency. We also prove that the intermediary stocks a strict subset of the product

space i.e. it voluntarily limits its product range.

We then derive the intermediary�s optimal stocking policy in this special case. One

might expect the intermediary to sell products with relatively high values of � and v,

but this turns out to be incorrect. Instead the intermediary�s optimal product range

exhibits a form of �negative correlation�in (�; v) space, consisting of two regions in the

top-left and the bottom-right. Intuitively a consumer searches the retailer (respectively,

an individual manufacturer) if its average (respectively, individual) v exceeds her unit

search cost. Consequently demand for a low-v product increases when the intermediary

stocks it, and since the manufacturer need only be compensated for its lost sales, these

products are pro�t generators. Nevertheless the intermediary cannot stock too many low-

v products otherwise it becomes less attractive to consumers, and therefore only stocks

a limited number of the most pro�table ones i.e. those with high �. Conversely demand

for high-v products falls when the intermediary stocks them, and hence it makes a loss

on them. These products are useful in attracting consumers, so the intermediary stocks

some of them, but it manages its losses by choosing these products to have relatively low

�.

In Section 4 we solve for the intermediary�s optimal product range in the general case,

where the intermediary can also use non-exclusive contracts and can provide economies

of search. The intermediary faces the following tradeo¤ when deciding whether to stock

a product exclusively or non-exclusively. On the one hand consumers are more likely

to search it when it has many exclusive products which are not available for purchase

elsewhere. On the other hand the intermediary also needs to compensate manufacturers

more if it stocks their product exclusively, since manufacturers lose the ability to sell to
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consumers who are not interested in shopping at the intermediary. We show that when

the stocking space constraint does not bind, the optimal product selection is similar to

the special case, except that the intermediary also stocks products in the top-right part of

(�; v) space non-exclusively. Intuitively by stocking the latter products non-exclusively,

the intermediary attracts more consumers due to economies of search, but still allows

consumers who do not visit it to buy those products from their respective manufacturers,

thus reducing how much those manufacturers need to be compensated. We also show

that as the intermediary�s stocking space becomes smaller, the intermediary�s optimal

product range contains fewer and fewer of these non-exclusive products and eventually

again exhibits negative correlation in (�; v) space.

We also solve for a social planner�s optimal product range in Section 5 and compare

it with what the intermediary chooses. The intermediary distorts consumers�purchases,

because it forces them to buy a bundle of products including some low-v products which

they ordinarily would not search for. On the other hand, consumers search too little from

a welfare perspective, because they only account for their own surplus and ignore the

pro�t earned by �rms. We show that under weak conditions the social planner �nds it

optimal to have an intermediary. However the intermediary tends to stock more products

than the social planner would like, and often too many of them are stocked exclusively.

Finally in Section 6 we discuss two issues. One issue is how to generate our (�; v)

space and how to interpret di¤erent points within it. For instance, we argue that prod-

ucts with large and elastic/convex demands tend to have relatively high v and low � and

so are stocked exclusively to attract consumers, whereas products with large and inelas-

tic/concave demands tend to have relatively low v and high � and so are used by the

intermediary as pro�t generators. Another issue we consider is upstream competition,

which we do by assuming that each product has two manufacturers. Upstream com-

petition does not qualitatively change the optimal product selection, but it reduces the

intermediary�s cost of buying products from manufacturers and so greatly improves its

pro�t.

1.1 Related literature

There is already a substantial body of literature on intermediaries (see e.g. Spulber

(1999)). An intermediary may exist because it improves the search e¢ ciency between

buyers and sellers (e.g. Rubinstein and Wolinsky (1987), Gehrig (1993), and Spulber

(1996)), or because it acts as an expert or certi�er that mitigates the asymmetric infor-
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mation problem between buyers and sellers (e.g. Biglaiser (1993), and Lizzeri (1999)).5

We also study intermediaries in an environment with search frictions, but in our model an

intermediary can pro�tably exist in the market even if it does not improve search e¢ ciency.

This relies on consumers demanding multiple di¤erent products, and this multiproduct

feature distinguishes our model from existing work on intermediaries.

The mechanism by which an intermediary makes pro�t by stocking negatively corre-

lated products in the (�; v) space is reminiscent of bundling (e.g. Stigler (1968), Adams

and Yellen (1976), McAfee, McMillan, and Whinston (1989), and Chen and Riordan

(2013)). By stocking some products that consumers value highly, the intermediary forces

consumers to visit and buy other low-value (but fairly pro�table) products as well which

consumers would otherwise not buy.6 However in bundling models the �rm often needs

to adjust its prices after bundling to extract more consumer surplus and make bundling

pro�table. In our model a product�s price remains the same no matter who sells it. More

importantly our paper focuses on product selection, and so is more related to the question

of which products a �rm should bundle (however this question is rarely discussed in the

bundling literature). In a totally di¤erent context about information design, Rayo and

Segal (2010) use this same bundling argument to show that an information provider often

prefers partial information disclosure in the sense of pooling two negatively correlated

prospects into one signal. They consider a discrete framework, and more importantly

their information provider can send multiple signals (which would be like the case where

our intermediary could organize and sell non-overlapping products in multiple stores).7

This makes the optimization problem in our paper very di¤erent from theirs. In addition

many other features of our model such as the investigation of non-exclusivity vs exclu-

sivity arrangements, the economies of search, and the stocking space constraint, have no

counterparts in either the bundling literature or the above information design paper.

Our paper is also related to the growing literature on multiproduct search (e.g. McAfee

5In the context of retailers, other possible reasons for retailers to exist include that they may know

more about consumer demand compared to manufacturers, they can internalize pricing externalities when

products are complements or substitutes, or they may be more e¢ cient in marketing activities due to

economies of scale.
6Bundling models need consumers with heterogeneous valuations for each product. In our model

consumers have the same valuation for a product but they di¤er in their search costs, so their net

valuation after taking into account the search cost is actually heterogeneous.
7Alternatively, if any subset of manufacturers could merge and use the same technology as the in-

termediary to sell their products together, the problem would then be more similar to Rayo and Segal

(2010)�s.
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(1995), Zhou (2014), Rhodes (2015), and Kaplan et al. (2016)). Existing papers usually

investigate how multiproduct consumer search a¤ects multiproduct retailers�pricing de-

cisions when their product range is exogenously given. Our paper departs from this

literature by focusing on product selection, another important decision for multiproduct

retailers. Moreover our paper introduces manufacturers and so explicitly models the ver-

tical structure of the retail market. In this sense it is also related to recent research on

consumer search in vertical markets such as Janssen and Shelegia (2015), and Asker and

Bar-Isaac (2016), though those works consider single-product search and address totally

di¤erent economic questions.

Finally, this paper is related to the research on product assortment planning in op-

eration research and marketing (see, e.g., the survey by Kök et al. (2015)). But that

literature focuses on the optimal variety selection for a certain product when consumers

have single-product demand. Our paper instead focuses on a retailer�s optimal prod-

uct range choice when consumers have multiproduct demand. We study this issue with

explicit upstream manufacturers and consumer shopping frictions, neither of which is

considered in the above mentioned literature.8

2 The Model

There is a continuum of manufacturers with measure one, and each produces a di¤erent

product. Manufacturer i has a constant marginal cost ci � 0. There is also a unit mass of
consumers, who are interested in buying every product. The products are independent,

such that each consumer wishes to buy Qi(pi) units of product i when its price is pi.

When a consumer buys multiple products, her surplus is additive over these products.

We assume that Qi(pi) is downward-sloping and well-behaved such that (pi � ci)Qi(pi)
is single-peaked at the monopoly price pmi . Per-consumer monopoly pro�t and consumer

surplus from product i are respectively denoted by

�i � (pmi � ci)Qi(pmi ) and vi �
Z 1

pmi

Qi(p)dp . (1)

8In this aspect Bronnenberg (2017) is closer to our paper. He studies a free-entry model in a circular

city with both manufacturers and retailers. Consumers have preferences for variety but shopping for

variety is costly, so retailers can save consumers shopping costs by carrying multiple varieties. Bronnen-

berg�s model is otherwise very di¤erent from ours and also focuses on di¤erent economic questions. In

particular all varieties in his model are symmetric, so there is no meaningful way to study the composition

of product selection which, however, is the focus of our paper.
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Manufacturers can sell their products directly to consumers, for example via their own

retail outlets (see below for an alternative interpretation). In addition there is a single

intermediary, which can buy products from manufacturers and resell them to consumers.

The intermediary has no resale cost, but can stock at most a measure �m � 1 of the

products (which we call a �hard� constraint). An individual product can therefore be

sold to consumers in one of three di¤erent ways: i) only by the manufacturer, ii) only

by the intermediary, or iii) by both the intermediary and its manufacturer. We assume

that the intermediary has all the bargaining power, and simultaneously makes take-it-or-

leave-it o¤ers to each manufacturer whose product it wishes to stock.9 These o¤ers can be

either �exclusive�(meaning that only the intermediary can sell the product to consumers)

or �non-exclusive� (meaning that both the intermediary and the relevant manufacturer

can sell the product to consumers). In both cases we suppose that the intermediary

o¤ers two-part tari¤s, consisting of a wholesale unit price � i and a lump-sum fee Ti. The

intermediary also informs manufacturers about which products it intends to stock, and

whether it intends to stock them exclusively or non-exclusively.10 Manufacturers then

simultaneously decide whether or not to accept their o¤er.

Consumers know where each product is available, but do not observe (� i; Ti) in any

contract between a manufacturer and the intermediary. In addition, consumers cannot ob-

serve a �rm�s price(s) or buy its product(s) without incurring a search cost.11 Consumers

di¤er in terms of their �type�or unit search cost s, which is distributed in the population

according to a cumulative distribution function F (s) with support (0; s]. Suppose that

the corresponding density function f(s) is everywhere di¤erentiable, strictly positive, and

uniformly bounded with maxs f(s) <1. One interpretation is that s is the opportunity
cost of spending a unit time in shopping. If a consumer of type s visits a measure n of

manufacturers, she incurs an aggregate search cost n � s.12 If the same consumer also
visits the intermediary, and the intermediary stocks a measure m of products, she incurs

9Our results do not change qualitatively if instead the intermediary and manufacturer share any pro�ts

that are earned from sales of the latter�s product.
10This assumption aims to capture the idea that in practice negotiations evolve over time, such that

manufacturers can (roughly) observe what other products the intermediary stocks.
11Our assumptions here try to capture the idea that a retailer�s product range is usually reasonably

steady over time, whilst its prices �uctuate more frequently for example due to cost or demand shocks.
12Here we implicitly assume that visiting each manufacturer is equally costly. More generally, the cost

of visiting di¤erent manufacturers may be di¤erent, and our framework can be extended to deal with

that case. One possible way to do that is to use (�; v; �) to characterize each product where � captures

the amount of time needed to visit a manufacturer.
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an additional search cost of h(m) � s.13 Once a consumer has searched a �rm, she can
recall its o¤er costlessly.

We assume that the function h (m) is positive and weakly increasing, re�ecting the

idea that larger stores may take longer to navigate,14 and may also be located further

out of town. (However notice that the case of h(m) being a constant and so independent

of the measure of stocked products is also allowed.) When h (m) < m we say that the

intermediary generates economies of search, and when h (m) > m we say that it generates

diseconomies of search. When h(m) is strictly increasing, the intermediary faces another

�soft� constraint because as it stocks more products it becomes costlier for consumers

to visit it. As we will see later on, when h(m) increases fast enough this will cause the

intermediary to voluntarily restrict its size even if its hard stocking space constraint is

not binding.

Finally, the timing of the game is as follows. At the �rst stage, the intermediary

simultaneously makes o¤ers to manufacturers whose product it would like to stock. An

o¤er speci�es (� i; Ti) and whether the intermediary will sell the product exclusively or not.

The manufacturers then simultaneously accept or reject. At the second stage, all �rms

that sell to consumers choose a retail price for each of their products. Both manufacturers

and the intermediary are assumed to use linear pricing. At the third stage, consumers

observe who sells what and form (rational) expectations about all retail prices. They then

search sequentially among �rms and make their purchases. We assume that if consumers

observe an unexpected price at some �rm, they hold passive beliefs about the retail prices

they have not yet discovered.

2.1 Preliminary analysis

Our aim is to study which products a pro�t-maximizing intermediary should choose to

stock, and whether or not it should sell them exclusively. However it is instructive to

�rst brie�y consider what would happen if there were no intermediary. In this case, the

only equilibrium in which each product market is active has each manufacturer selling

its product at the monopoly price. This follows from standard arguments concerning the

hold-up problem in search models with only one �rm (see, e.g., Stiglitz, 1979, and An-

derson and Renault, 2006). In particular, since consumers only observe a manufacturer�s

13Considering a more general search cost function h(m; s) would make our model less tractable but

would not change the main insights.
14However we do not explicitly model in-store shopping process, since this would require us to analyze

not only which products the intermediary stocks but also how it displays them to consumers.
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price after incurring the search cost, their decision of whether to search a manufacturer

depends only on the expected price there. Once a consumer arrives at the manufacturer,

the search cost is already sunk and so the manufacturer optimally charges its monopoly

price. Hence consumers should rationally expect monopoly pricing.15 Therefore recall-

ing the notation introduced in (1), in equilibrium manufacturer i is searched only by

consumers with s � vi, and so it earns a pro�t �iF (vi).
It turns out that we have a similar simple pricing outcome when the intermediary is

active. (All omitted proofs can be found in the appendix.)

Lemma 1 (i) In any equilibrium where each product market is active, each seller of a

product charges consumers the relevant monopoly price.

(ii) If product i is stocked exclusively by the intermediary, the intermediary o¤ers the

manufacturer (� i = ci; Ti = �iF (vi)). If product i is stocked non-exclusively by the inter-

mediary, in terms of studying the optimal product range, it is without loss of generality

to focus on the contracting outcome where the intermediary o¤ers (� i = ci; Ti) to manu-

facturer i, such that the manufacturer�s total payo¤ is �iF (vi).

To understand the intuition behind Lemma 1, recall from earlier that a product can

be sold in three di¤erent ways. Firstly product i may be sold only by its manufacturer.

The logic for why the manufacturer charges its monopoly price pmi is exactly the same

as in the case of no intermediary. The intermediary then earns �iF (vi), which forms its

outside option if it receives an o¤er from the intermediary. Secondly product imay be sold

exclusively by the intermediary. Since consumers do not observe the price before searching,

the same hold-up argument implies that if the intermediary faces a wholesale price � i, it

will charge the corresponding monopoly price argmax (p� � i)Qi (p). Notice that joint
pro�t earned on product i is maximized when the intermediary charges the monopoly

price pmi , therefore in order to induce this outcome the intermediary proposes � i = ci

i.e. a bilaterally e¢ cient two-part tari¤. The intermediary then drives the manufacturer

down to its outside option by o¤ering it a lump-sum payment Ti = �iF (vi). Thirdly

product i may be sold by both its manufacturer and the intermediary. The analysis here

is more complex. However the main idea is that the intermediary again avoids double-

marginalization by proposing a contract with � i = ci, whilst search frictions eliminate

price competition between the manufacturer and intermediary. In particular, following

15As is usual in search models, there also exist other equilibria in which consumers do not search (some)

manufacturers because they are expected to charge very high prices, and given no consumers search these

high prices can be trivially sustained. We do not consider these uninteresting equilibria in this paper.
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Diamond�s (1971) paradox if consumers expect both sellers to charge the same price for

product i, they will search at most one of them and hence each �nds it optimal to charge

the monopoly price. The manufacturer is compensated for any sales that it loses in signing

the contract by way of a lump-sum transfer.

Given Lemma 1, it is convenient to index products by their per-consumer monopoly

pro�t and consumer surplus as de�ned in (1) (rather than by their demand curve Qi (pi)).

Therefore let 
 � R2+ be a two-dimensional product space (�; v), and suppose it is com-
pact and convex. Let v � 0 and v <1 be the lower and the upper bound of v. For each

v 2 [v; v], there exist �(v) � �(v) < 1 such that � 2 [�(v); �(v)]. (In section 6.1 we
provide examples of demand functions which can generate this type of product space.)

Let (
;F ; G) be a probability measure space where F is a �-�eld which is the set of

all measurable subsets of 
 according to measure G. (In particular, G(
) = 1.) When

there is no confusion, we also use G to denote the joint distribution function of (�; v),

and let g be the corresponding joint density function. We assume that g is di¤erentiable

and strictly positive everywhere. If a consumer buys a set A 2 F of products at their

monopoly prices, she obtains surplus
R
A
vdG before taking into account the search cost.

To avoid trivial corner solutions, we also assume that v � s.

Discussion. Before we start solving for optimal product range, we discuss some of our

modeling assumptions and their implications.

(i) A continuum of products. Considering a continuum of products is mainly for

analytical convenience. A model with a discrete number of products f(�i; vi)gi=1;:::;n
would yield qualitatively similar insights but be messier to solve because the optimization

problem would become a combinatorial one. (See footnote 22 later for the details. The

case with only two products is easy to deal with, but is not rich enough to study the

optimal product range choice in a meaningful way.)

(ii) Homogeneous consumer demand. Consumers are assumed to have demand for all

products. In reality a consumer usually only buys a small fraction of the products available

in a store, and some consumers want to buy more products than others (or similarly

some products are needed more often than others). Our framework can be modi�ed to

capture this consumer demand heterogeneity,16 but it becomes less tractable because two

consumers with the same s can have very di¤erent search patterns. On the other hand, we

will show later that consumers with a lower search cost are more willing to shop around

16One possible way is to characterize each product by (�; v; �) where � 2 [0; 1] is the probability that
product (�; v) is needed by a consumer.
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and buy more products. In this sense we have already allowed demand heterogeneity:

consumers with a low/high search cost can be regarded as high/low-demand consumers.

(iii) Direct sales from manufacturers to consumers. Manufacturers are assumed to be

able to sell direct to consumers. However nothing changes if instead the manufacturer faces

a choice between selling via an independent single-product (specialist) or a multiproduct

(generalist) retailer, or both. In particular consider the following modi�cation of our

set-up. Suppose that �rst the intermediary makes o¤ers to manufacturers, who each

accept or reject. Manufacturers are unable to sell direct to consumers. However second,

if the manufacturer is not forbidden from doing so, it can make an o¤er to a relevant

specialist retailer whose only option is to stock its product. As in Lemma 1, we can

prove that equilibrium contracts are such that all sellers charge the relevant monopoly

price, and the manufacturer fully extracts the single-product retailer. Consequently each

manufacturer�s pro�t is the same as it would earn if it could sell directly to consumers.

Hence the intermediary�s optimal product selection will be the same as in our main model.

(iv) Lemma 1 and monopoly pricing. The monopoly pricing outcome described in

Lemma 1 enables us to represent products using (�; v) space, and hence study product

range choice in a tractable way. However notice that monopoly pricing is not important

per se - what really matters for our analysis is that the retail price of each product remains

the same irrespective of where it is sold. Of course in practice prices usually di¤er across

retail outlets, and a large literature already explores this. Our model abstracts from such

price dispersion in order to make progress in understanding optimal product choice.

3 A Simple Case

We now turn to study the intermediary�s optimal product range choice. We start with a

special case where i) the intermediary can only o¤er exclusive contracts, ii) h (m) = m

such that the cost of visiting the intermediary is the same as it would have cost to visit

the manufacturers whose products it sells (i.e. no economies of scale in search), and iii)

there is no stocking space limit (i.e. �m = 1). This relatively simple case is not meant

to be realistic, but it helps to illustrate some of the economic forces in�uencing optimal

product selection.

We �rst solve for a consumer�s decision of whether or not to search the intermediary.

Suppose the intermediary sells a positive measure of products A 2 F . A consumer can
cherry-pick from the products not stocked by the intermediary (i.e. she will search any

product i 62 A if and only if s � vi), but she cannot cherry-pick from amongst the
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intermediary�s products � she must either search all or none of them. Therefore if a

consumer visits the intermediary she incurs an additional search cost s
R
A
dG, but also

expects to receive additional utility
R
A
vdG since she will buy all products available there.

Consequently a consumer visits the intermediary if and only if s � k, where

k =

R
A
vdGR
A
dG

(2)

is the average consumer surplus amongst the products sold at the intermediary. (Note that

the order in which the consumer searches through the intermediary and manufacturers

does not matter.)

The intermediary�s problem is then

max
A2F

Z
A

� [F (k)� F (v)] dG ; (3)

with k de�ned in (2).17 In particular the intermediary earns a net pro�t � [F (k)� F (v)]
from product (�; v) if it stocks it. This is explained as follows. The intermediary attracts

a mass of consumers F (k), and so earns variable pro�t �F (k). However from Lemma 1

the intermediary must also compensate the relevant manufacturer with a lump-sum trans-

fer �F (v). The following simple observation will play an important role in subsequent

analysis: among the products stocked by the intermediary, those with v < k generate a

pro�t while those with v > k generate a loss. Intuitively a product with v < k generates

relatively few sales when sold by its manufacturer, since consumers anticipate receiving

only a low surplus. When the same product is sold by the intermediary its sales increase,

because more consumers search the intermediary (given its higher expected surplus k).

The opposite is true for a product with v > k, i.e. its demand is shrunk when sold through

the intermediary.18

The following lemma is a useful �rst step in characterizing the intermediary�s optimal

product range.

Lemma 2 The intermediary makes a strictly positive pro�t. It sells a strictly positive
measure of products but not all products (i.e.

R
A
dG 2 (0; 1)).

17Note that when
R
A
dG = 0 the intermediary�s pro�t is zero and it does not matter how we specify

k. Some of our later analysis will consider limit cases where the measure of A goes to zero, and in those

cases k will be well-de�ned via L�hopital�s rule.
18Notice that the same will be true for a general h(m) if it increases in m fast enough. But if h(m)

is close to be constant and is su¢ ciently small, then k can be greater than any v in A. As we will see

in Section 4, in the latter case the characterization of the optimal product selection will be signi�cantly

di¤erent and the problem will be more interesting with the hard stocking space constraint.
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The intermediary earns strictly positive pro�t even though its search technology is no

more e¢ cient than that of the manufacturers whose products it resells.19 To understand

why, recall that the intermediary always makes a gain on some products and a loss on

others, and that these gains and losses are proportional to a product�s per-customer

pro�tability �. Now imagine that the intermediary selects its loss-making products from

amongst those with low �, and selects its pro�t-making products from those with high �.

This strategy seeks to minimize losses on the former, and maximize gains on the latter,

and so might be expected to generate a net positive pro�t. In the proof we show by

construction that there is always some set A where this logic is correct. On the other

hand, even with no stocking space constraint, the intermediary does not stock all products.

In the proof we show that starting from stocking all products, the intermediary can always

do strictly better by excluding some loss-making products with high � together with some

pro�t-generating products with low �.

We now solve explicitly for the optimal set of products stocked by the intermediary.

Instead of working directly with areas in 
, it is more convenient to introduce a stocking

policy function q (�; v) 2 f0; 1g. Then stocking products in a set A 2 F is equivalent to

adopting a measurable stocking policy function q(�; v) = 1 if and only if (�; v) 2 A. The
intermediary�s problem then becomes

max
q(�;v)2f0;1g

Z



q(�; v)�[F (k)� F (v)]dG ;

where the average consumer surplus k o¤ered by the intermediary solvesZ



q(�; v) (v � k) dG = 0 : (4)

This is an optimization of functionals. It can be shown that this optimization problem

has a solution, and the optimal solution can be derived by treating (4) as a constraint

and using the following Lagrange method.

The Lagrangian function is

L =
Z



q(�; v)[�(F (k)� F (v)) + �(v � k)]dG ; (5)

where � is the Lagrange multiplier associated with the constraint (4). The �rst term

�(F (k) � F (v)) is the direct e¤ect on pro�t of stocking product (�; v), and the second
term �(v � k) re�ects the indirect e¤ect from the in�uence on consumer search behavior

19By continuity the same can be true even if the intermediary�s search technology is less e¢ cient than

the manufacturers.

14



(where � > 0 as we will see below). For the products with v < k, their direct e¤ect is

positive as we explained before, while their indirect e¤ect is negative since stocking them

reduces the average consumer surplus of the products in the intermediary. The opposite

is true for the products with v > k. Since the integrand in (5) is linear in q, the optimal

stocking policy is as follows:

q(�; v) =

(
1 if �(F (k)� F (v)) + �(v � k) > 0
0 otherwise

:

For given k and �, we let I(k; �) denote the set of (�; v) for which q(�; v) = 1. It

consists of the following two regions:

v < k and � � � k � v
F (k)� F (v) ; (6)

and

v > k and � � � k � v
F (k)� F (v) : (7)

(Notice that it is indi¤erent whether or not to stock products with v = k.)

Graphically we can divide 
 space into four quadrants, using a vertical locus v = k and

a horizontal locus � = �(k�v)
F (k)�F (v) (which is continuous in v, including at the point v = k).

Then the intermediary�s optimal product selection consists of two �negatively correlated�

regions in (�; v) space. The intermediary stocks products in the bottom-right quadrant

with high v and low �: since products with v > k make a loss, the intermediary chooses

those with the lowest possible �. These products are stocked to attract consumers to

search the intermediary. The intermediary also stocks products in the top-left quadrant

with low v and high �: since products with v < k make a pro�t, the intermediary chooses

those with the highest possible �. The products in the other regions are not stocked:

those with low v and low � would generate little direct pro�t whilst dissuade consumers

from searching, and those with high v and high � are too expensive to buy from their

manufacturers.

It then remains to determine k and �. Firstly, at the optimum we must have F (k) 2
(0; 1). To see why, note that Lemma 2 implies that I(k; �) must have a strictly positive

measure, and therefore by the de�nition of k it must be true that k 2 (v; v). Moreover
by assumption [v; �v] � [0; �s] and so it follows that F (k) 2 (0; 1). Since k is interior, we
can take the �rst-order condition of (5) with respect to k, and obtainZ

I(k;�)

(f(k)� � �)dG = 0 ; (8)
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whereupon we observe that � > 0.20 Secondly, we have the original constraint (4), which

we can rewrite as Z
I(k;�)

(v � k)dG = 0 : (9)

We therefore have a system of two equations (8) and (9) in two unknowns.21

The following result summarizes the above analysis:22

Proposition 1 The intermediary optimally stocks products in the regions of (6) and (7),
where k 2 (v; v) and � > 0 jointly solve equations (8) and (9).

To illustrate, consider a uniform product space with 
 = [0; 1]2 and G(�; v) = �v.

If F (s) = s on [0; 1], one can check that in the optimal solution the product space is

divided by v = k and � = � with k = � = 1
2
. If F (s) =

p
s on [0; 1], one can check

that in the optimal solution the product space is divided by v = k and � = �(
p
k +

p
v)

with k � 0:4876 and � � 0:3515. The shaded areas in Figure 1 below depict the optimal
product range in these two examples. In the �rst example the intermediary makes pro�t
1
32
and improves industry pro�t by 12:5% relative to the case of no intermediary, and

in the second example the intermediary makes pro�t about 0:036 and improves industry

pro�t by about 10:8%.

In this simple case it is clear that without improving search e¢ ciency, the intermediary

must harm consumers by restricting their opportunities to cherry-pick from all products.

However, total welfare (which is the sum of industry pro�t and consumer surplus) could

be improved. In fact, this is the case in both of the above examples: the intermediary

improves total welfare by about 2:5% and 2:8%, respectively. This is because consumers

search too little and buy too few products in the case of no intermediary: they search and

20(8) implies that � equals f(k) times the average pro�t of the products stocked by the intermediary.

Intuitively � captures the impact on pro�t of a small decrease in k, and k can be decreased either by

removing some loss-making products with high v, or adding some pro�table products with low v.
21If the system has multiple solutions, the solution that generates the highest pro�t is the optimal one.
22If we consider a discrete number of products f(�i; vi)gi=1;:::;n, the intermediary�s problem becomes

max
qi2f0;1g

X
i

qi�i[F (k)� F (vi)]

with k =
P

i qivi=
P

i qi. This is a combinatorial optimization problem. Given the number of possible

stocking policies, 2n, is very large even for dozens of products, this problem is usually not easy to solve.

One approach is to make the problem smooth by allowing stochastic stocking policies with qi 2 [0; 1].
Then we can use the Lagrange method and will have bang-bang solutions. The additional complication

is how to solve the two equations of k and � usually depends in a messy way on the locations of the

products in the discrete product space.
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buy product (�; v) only if s < v, but from the perspective of total welfare they should

search and buy if s < � + v. The intermediary forces consumers with s < k to buy some

low-v but high-� products which they would not buy otherwise. We will study the socially

optimal product selection in Section 5.
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Figure 1: Optimal product range: the simple case

Finally we brie�y discuss how the shape of the search cost distribution F (s) in�uences

the optimal product range. Observe from Proposition 1 that the horizontal locus � =

� (k � v) = [F (k)� F (v)] increases in v when F (s) is concave (as we have seen in the
above example with F (s) =

p
s) and decreases in v when F (s) is convex. Hence the

intermediary�s optimal product range tends to contain more low-v and high-v items when

F (s) is concave, and the opposite when F (s) is convex. To understand why, consider

the case of a concave F (s). Notice that the compensation paid by the intermediary

to the manufacturer is �F (v), which grows relatively sharply in v when v is low, but

grows relatively slowly in v when v is large. Hence it makes sense for the intermediary to

mainly stock products with very low v (where the extremely low compensation outweighs

the negative e¤ect on consumer search) and very high v (where the small additional

compensation is outweighed by the bene�cial e¤ects of increased consumer search).

4 The General Case

We now return to the general case: the intermediary has a stocking space of size �m and

can o¤er both exclusive and non-exclusive contracts, and the search cost of visiting the

intermediary of size m is h (m) � s, where h(m) is weakly increasing. Let q(�; v) =
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(qE(�; v); qNE(�; v)) be the stocking policy function, where qE(�; v) 2 f0; 1g indicates
whether product (�; v) is stocked exclusively or not, and qNE(�; v) 2 f0; 1g indicates
whether product (�; v) is stocked non-exclusively or not. Note that for each product

(�; v), at most one of qE(�; v) and qNE(�; v) can be 1, but it is possible that both are 0

(which happens when the intermediary does not stock product (�; v)). Then

q(�; v) � qE(�; v) + qNE(�; v)

indicates whether product (�; v) is stocked or not as before. Using the notation q(�; v)

is more convenient whenever the exclusivity arrangement does not matter. Henceforth

whenever there is no confusion we will suppress the arguments (�; v) in the stocking policy

function.

Let us �rst investigate a consumer�s optimal search rule. Given all products are always

sold at their monopoly prices, if a consumer decides to visit the intermediary, she will buy

all the products available there regardless of whether they are exclusive or not, and will

only buy those products not stocked there from the relevant independent manufacturers if

v > s. (In other words, no consumer will search the same product twice.) Also notice that

the order in which the consumer visits the various manufacturers and the intermediary

does not matter. Therefore, if a consumer of type s chooses to visit the intermediary, her

surplus is

u1 (s;q) =

Z
qvdG� h

�Z
qdG

�
s+

Z
v>s

(1� q) (v � s) dG ; (10)

where the �rst two terms are the surplus from visiting the intermediary and the �nal term

is the surplus from products not available at the intermediary. Notice that exclusivity

arrangement does not matter for consumer surplus in this case.

If a consumer of type s does not visit the intermediary, she will buy all products with

v > s available in manufacturers (i.e. not stocked exclusively by the intermediary). Thus

her surplus is

u0 (s;q) =

Z
v>s

(1� qE) (v � s) dG : (11)

Observe that as the intermediary stocks more products exclusively i.e. as qE takes value

1 for more products, visiting the intermediary becomes relatively more attractive. This

suggests that even though the intermediary can now o¤er non-exclusive contracts, it may

still use (more expensive) exclusive contracts in order to attract more consumers.

To ease the exposition, we introduce the following tie-break rule: consumers visit the

intermediary only if doing so strictly increases their payo¤. As we show in the appendix,
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the di¤erence between (10) and (11) is non-negative at s = 0 and weakly concave in s.

Then we obtain the following cut-o¤ search rule.

Lemma 3 Consumers search the intermediary if and only if s < k, where
(i) k = 0 (nobody searches the intermediary) if

R
qEdG = 0 and

R
qdG � h

�R
qdG

�
.

(ii) k > �s (everybody searches the intermediary) if
R
qvdG > h

�R
qdG

�
�s.

(iii) k 2 (0; �s] otherwise and is the solution to

k =

R
v<k

qvdG+
R
v>k

qEvdG

h(
R
qdG)�

R
v>k

qNEdG
: (12)

In this case k < v if and only if
R
qvdG < h

�R
qdG

�
v.

According to part (i) of the lemma, no consumer visits the intermediary when all

its products are non-exclusive and it generates diseconomies of search. This is simply

because consumers can then acquire all of the intermediary�s products elsewhere at a

lower cost. On the other hand, part (ii) shows that all consumers visit the intermediary

when it generates su¢ ciently strong economies of search. Finally, part (iii) shows that in

other cases consumers follow a cut-o¤ strategy, and search the intermediary provided their

search cost is su¢ ciently low. Intuitively, in our model a consumer with a lower search

cost is a high-demand consumer who is willing to buy more products, so has a higher

incentive to visit the intermediary.23 ;24 Notice that in (iii) the non-exclusive products

with v > k a¤ect consumer search behavior only by their mass but not by their values.

This is because the only impact on consumers of buying them in the intermediary is

the change of the search cost associated with them relative to directly buying from their

manufacturers. We highlight the condition for k < v because if the search economies are

su¢ ciently strong so that the opposite is true, the demand for any product sold by the

intermediary will be greater than when it is sold directly by its manufacturer, so there

will be no loss-making products.

Given the consumer search rule in Lemma 3 and the result of monopoly pricing from

Lemma 1, the intermediary�s pro�t, when it chooses a stocking policy q, is

�(q) =

Z
v<k

q�[F (k)� F (v)]dG+
Z
v>k

qE�[F (k)� F (v)]dG : (13)

23More precisely, the advantage of shopping at the intermediary is that it stocks some products exclu-

sively and/or has a better search technology, while the disadvantage is that consumers may buy some

products with low v which ordinarily would not interest them. However consumers with low s would like

to buy most products anyway, and so the latter disadvantage is small.
24This is consistent with the recent trend that more small local grocery stores are opened up to cater

for consumers who only need a small basket of products and have no time to travel to big stores.
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For a product with v < k, the pro�t from it is independent of its exclusivity (i.e.,

only q = qE+ qNE matters). This is because even under non-exclusivity the manufacturer

makes zero sales, since consumers with s < k buy from the intermediary, and consumers

with s � k �nd it too costly to search a manufacturer with v < k. Hence the intermediary
always earns revenue �F (k) and must pay the manufacturer the full pro�t �F (v) that it

would earn if it rejected the o¤er. This explains the �rst term. The second term in (13)

is pro�t earned on exclusive products with v > k. This takes the same form as in the

previous section, and these products are stocked at a loss to drive store tra¢ c. Note that

this second term exists only if k < v.

Finally, and most interestingly, products with v > k which are stocked non-exclusively

do not appear in equation (13), because they generate zero pro�t for the intermediary.

The reason is that consumers with s < k buy the product from the intermediary, whilst

consumers with s 2 (k; v) buy it directly from the manufacturer. Hence, to make up the

manufacturer�s lost revenue the intermediary only needs to compensate the manufacturer

by �F (k), which is exactly the revenue that it earns from such a product. Although these

products generate no direct revenue for the intermediary for a given k, they can in�uence

consumers�search behavior via k and so indirectly a¤ect the intermediary�s pro�t. As a

result, the intermediary may still have an incentive to stock them.

The following lemma gives some su¢ cient conditions for the intermediary to make a

pro�t.

Lemma 4 The intermediary will always stock a strictly positive measure of products and
earn a strictly positive pro�t if h(m) = m for all m 2 [0; �m] or if h(m) < m for some

m 2 (0; �m].

When the intermediary does not improve search e¢ ciency, it can make a pro�t by

stocking some products exclusively as in the simple case. When it improves search ef-

�ciency for some m, it can make a pro�t at least by stocking a measure m of products

non-exclusively, though as we will see below using non-exclusive contracts only is usually

not the optimal stocking policy unless �m is su¢ ciently large and economies of search are

su¢ ciently strong.

In the following, we characterize the optimal product selection. The analysis turns out

to be more transparent if we start with the case with no stocking space limit (i.e. �m = 1).

We will investigate the case of �m < 1 afterwards. Henceforth, we assume h0(m) 2 [0; 1],
i.e., there are (weakly) economies of scale in searching the intermediary when it expands

marginally.
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4.1 Unlimited stocking space

When the intermediary has no limit on how many products it can stock, the following

lemma gives a �rst qualitative description of what the optimal product range looks like:

Lemma 5 When the intermediary optimally stocks a positive measure of products and
consumers adopt a search rule with threshold k, (a) all products with v > k (if any)

must be stocked, and for each v > k there exists �+(v) such that product (�; v) is stocked

exclusively if and only if � � �+(v); (b) among the products with v < k (if any), for each
v < k there exists ��(v) such that product (�; v) is stocked if and only if � � ��(v).

An important di¤erence relative to the simple case in Section 3 is that now the in-

termediary will optimally stock all products with v > k. Suppose to the contrary that

some positive measure set of products B with v > k are not stocked. Then we show in

the proof that stocking all products in B non-exclusively is a pro�table deviation. As we

saw earlier the intermediary earns zero pro�t from these products, but they induce more

consumers (i.e., those with s slightly above k) to visit the intermediary since h0 (m) � 1
implies that searching the products in B in the intermediary saves them search costs.25

Once they visit the intermediary, they also buy other products available there which are

on average pro�table.

Nevertheless similar to the simple case, products with v > k that are stocked exclu-

sively make a loss, and so are chosen to have the lowest � possible in order to minimize

that loss. Moreover, and again similar to the simple case, products with v < k make

positive pro�t, and so are chosen to have the highest � possible in order to maximize

these pro�ts.

We now characterize the details of the optimal product range. The intermediary�s

problem is to maximize (13), where k is given in Lemma 3. It is more convenient to

introduce another parameter m =
R
qdG, i.e., the measure of all products stocked by the

intermediary. In this general case, corner solutions with m 2 f0; 1g or k 2 f0; �sg can
arise. In the following, we will focus on the case where the intermediary makes a strictly

positive pro�t in the optimal solution (so m > 0 and k > 0), and not all consumers visit

it (so k < s). Lemma 4 has provided simple su¢ cient conditions for the former, and

according to Lemma 3 a simple su¢ cient condition for the latter is
R
qvdG=h(

R
qdG) < s

25Note that in the knife-edge case where h0 (m) = 1 the intermediary is indi¤erent in stocking products

in B, since doing so does not change the search cost of marginal consumers, and so has no e¤ect on the

store tra¢ c.

21



for any q, which is equivalent to maxx
R v
x
vdG=h(

R v
x
dG) < s.26

Now the intermediary�s problem is to maximize (13) subject to (12). It is more con-

venient to treat m =
R
qdG as another constraint. (This may become a real constraint

when we introduce a limited stocking space in next subsection.) Notice that (12) can be

rewritten as Z
v<k

qvdG+

Z
v>k

(qEv + qNEk)dG� h(m)k = 0 : (14)

Then the Lagrangian function of the problem is

L =
Z
v<k

q� [F (k)� F (v)] dG+
Z
v>k

qE� [F (k)� F (v)] dG

+�

�Z
v<k

qvdG+

Z
v>k

(qEv + qNEk)dG� h(m)k
�
+ �

�
m�

Z
v<k

qdG�
Z
v>k

qdG

�
;

where � is the Lagrange multiplier associated with the constraint (14), and � is the

multiplier associated with the constraint m =
R
qdG.27 The intermediary maximizes L

by choosing q, k and m.

It is useful to rewrite the Lagrange function as

L =
Z
v<k

q[�(F (k)� F (v)) + �v � �]dG

+

Z
v>k

(qE[�(F (k)� F (v)) + �v � �] + qNE(�k � �))dG� �kh(m) + �m : (15)

This can be explained similarly as in the simple case by using the direct and indirect

e¤ect of stocking a product. In particular, �v� � re�ects the indirect e¤ect on consumer
search incentive of stocking a product with v < k or exclusively stocking a product

with v > k, and �k � � re�ects a similar e¤ect of stocking a product with v > k non-

exclusively. As we show in the proof of the following proposition, � = �kh0(m) � �k given
h0(m) � 1. Therefore, unsurprisingly stocking a product with v > k (regardless of its

exclusivity) always increases consumers�incentive to visit the intermediary. If h0(m) < 1,

even stocking a product with v slightly below k increases consumer search incentive as

well.

26More precisely,
R v
x
vdG =

R v
x

R �(v)
�(v)

vg(�; v)d�dv. The equivalence result is because for any stocking

policy q, 9 x 2 [v; v] such that
R
qdG =

R v
x
dG, and in the same time

R
qvdG �

R v
x
vdG since the average

v improves when the product mass is allocated to the products with the highest possible v�s.
27If m = 1, then we must have q = 1 everywhere and then the second constraint become redundant

and the � term disappears.
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Proposition 2 In the general case without stocking space limit, suppose the intermediary
makes a strictly positive pro�t and k 2 (0; s) in the optimal solution (which is true if the
conditions in Lemma 4 hold and maxx

R v
x
vdG=h(

R v
x
dG) < s). Then the optimal product

selection features either

(i) m < 1, and among the products with v < k, only those with

� � � h
0(m)k � v

F (k)� F (v) (16)

are stocked and it does not matter whether they are stocked exclusively or non-exclusively,

and among the products with v > k (if k < v), those with

� � � k � v
F (k)� F (v) (17)

are stocked exclusively and the others are stocked non-exclusively. In this case, the para-

meters k, �, and m solve the following system of equations:

k =

R
v<k

qvdG+
R
v>k

qEvdG

h(m)�
R
v>k

qNEdG
; (18)

� = f(k)

R
v<k

q�dG+
R
v>k

qE�dG

h(m)�
R
v>k

qNEdG
; (19)

m =

Z
qdG ; (20)

or

(ii) m = 1 (i.e., all products are stocked), and among the products with v > k (if k < v),

those with

� � � k � v
F (k)� F (v)

are stocked exclusively, and it does not matter whether to stock the products with v < k

exclusively or non-exclusively. In this case, � and k solve (18) and (19) with q = 1 and

m = 1.

This characterization is consistent with the qualitative description of the optimal prod-

uct range in Lemma 5. The main qualitatively di¤erence, compared to the simple case

in Section 3, is that the intermediary will stock the products in the top-right corner non-

exclusively (which were excluded when only exclusive contracts are available). Another

di¤erence is, if economies of scale in search is strong enough, the intermediary will stock all

23



products.28 A subtler di¤erence is that when h0(m) < 1, h0(m)k�v
F (k)�F (v) ! �1 when v ! k�.

This implies that for those products with v close to but smaller than k, they will always

be stocked regardless of their �.

Notice that for the stocked products with v < k, the exclusivity arrangement does

not matter. This is because even if such a product is also available for purchase in its

manufacturer, the consumers who do not visit the intermediary (i.e., those with s > k) will

not bother to visit the manufacturer either given v < s. This makes these products as

if they were sold exclusively by the intermediary even if the contract is not exclusive.

One way to tie-break this indi¤erence is to introduce some small-demand consumers

who never visit the intermediary. In that case, the intermediary will strictly prefer to

stock the products with v < k non-exclusively in order to reduce the compensation to

the manufacturers. (A formal proof is available upon request.) For this reason, in the

following we claim that the products with v < k are stocked non-exclusively.

To illustrate the optimal product selection, consider the uniform example withG(�; v) =

�v and F (s) = s. Suppose h (m) = �+�m. Figure 2(a) and 2(b) below depict the optimal

product selection when h(m) = m and h(m) = 0:7m, respectively. (In the �rst example

k = � = 1
2
and m = 0:75, and in the second k = � � 0:826 and m � 0:769.) Now the

products in the top-right corner are stocked non-exclusively,29 and as economies of search

improve the intermediary stocks more products overall but fewer exclusive products. With

stronger economies of search the intermediary will rely less on exclusive products to at-

tract consumers to visit.

Figure 2(c) and 2(d) below depict the optimal product selection when h(m) = 0:4 +

0:5m and h(m) = 0:4 + 0:2m, respectively. (According to Lemma 4, the intermediary

can make a positive pro�t in both examples. In the �rst example k = � � 0:487 and

m � 0:964, and in the second k = � � 0:832 and m � 0:985.) Given there is a relatively
large �xed component in the search cost, the intermediary needs to stock enough products

to make consumers willing to visit. But similar as in the previous two examples, as

economies of search become stronger it stocks more products overall but fewer exclusive

28A simple su¢ cient condition for m = 1 is
R
vdG=h(1) > s. Under this condition, Lemma 3 implies

that all consumers will visit the intermediary and buy if it stocks all products. This generates the highest

possible industry pro�t and so also the highest possible intermediary pro�t. A su¢ cient condition for

m < 1 is: � = v = 0, [0; �]2 � 
 for a su¢ ciently small � > 0, h(1) < 1, h0(1) > 0 and
R
vdG=h(1) < s.

(The proof is available upon request.) In general, however, it appears hard to �nd a necessary and

su¢ cient primitive condition for m < 1.
29In the �rst example with no economies of search the intermediary only has a weak incentive to

non-exclusively stock the products in the top-right corner [0:5; 1]2.
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products. Eventually if � is su¢ ciently close to zero, the intermediary will stock all

products non-exclusively. In such a case, it will be more interesting to investigate the

optimal product selection with a stocking space constraint.30
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(a) h(m) = m
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(b) h(m) = 0:7m
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(c) h(m) = 0:4 + 0:5m

E

NE

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

v

pi

(d) h(m) = 0:4 + 0:2m

Figure 2: Optimal product range: the general case with �m = 1

4.2 Limited stocking space

We now introduce the stocking space limit �m < 1. If the constraint does not bind in the

optimal solution, the characterization of the optimal product range is the same as in part

(i) of Proposition 2. In the following, we focus on the case when the constraint binds in

30Notice that stronger economies of search in visiting the intermediary can also be interpreted as more

costly direct-to-consumer sales. Therefore, our discussion also suggests that when direct-to-consumer

sales becomes easier (e.g., due to the online market), the retailer will become smaller and rely more on

o¤ering exclusive products.
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the optimal solution. Then we have a real constraint �m =
R
qdG, but the Lagrangian

function is the same as (15) except that m is replaced by �m:

L =
Z
v<k

q[�(F (k)� F (v)) + �v � �]dG

+

Z
v>k

fqE[�(F (k)� F (v)) + �v � �] + qNE(�k � �)g dG� �kh( �m) + � �m : (21)

Note that � is now the Lagrangian multiplier associated with the hard stocking space

constraint.

The following proposition reports the optimal product range in this case:

Proposition 3 In the general case with a limited stocking space �m < 1, suppose the

intermediary makes a strictly positive pro�t and k 2 (0; s) in the optimal solution (which
is true if the conditions in Lemma 4 hold and

R v
x
vdG=h(

R v
x
dG) < s for any x such thatR v

x
dG � �m). If the stocking space constraint binds in the optimal solution, then among

the products with v < k, only those with

� � �� �v
F (k)� F (v)

are stocked and it does not matter whether they are stocked exclusively or non-exclusively,

and among the products with v > k (if k < v in the optimal solution), the optimal selection

features either

(i) �k � � > 0 and those with
� � � k � v

F (k)� F (v)
are stocked exclusively and the others are stocked non-exclusively, or

(ii) �k � � = 0 and those with

� � � k � v
F (k)� F (v)

are stocked exclusively and some of the other products are stocked non-exclusively, or

(iii) �k � � < 0 and only those with

� � �� �v
F (k)� F (v)

are stocked exclusively. The parameters k, � and � solve (18)-(20) with m replaced by �m.
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From (21), we can see that �k � � captures the e¤ect on the intermediary�s pro�t of
stocking a product with v > k non-exclusively. Its sign determines whether the inter-

mediary should stock any such products. When �k � � = 0 in the optimal solution, the
intermediary is indi¤erent in which such products to select as long as the measure of them

is such that �k � � = 0. As a result, the product selection in this region is not uniquely
pinned down.

It appears hard to �nd primitive conditions for the sign of �k � � in the optimal
solution. But intuitively when the space constraint just starts binding, we have � =

�kh0( �m) from the previous analysis, and so �k � � > 0 if h0( �m) < 1. If the constraint

is tightened slightly from this point, what products should be removed? They should be

the products with v < k around the boundary �(F (k)�F (v))+�v�� = 0 because they
contribute zero to the intermediary�s pro�t while all other stocked products have a strictly

positive contribution. This process continues until �k� � = 0. Now if the stocking space
limit further shrinks, some non-exclusive products with v > k should be dropped because

they have zero contribution. But they should not be dropped all at once because otherwise

the constraint would be suddenly slack and we would have �k � � > 0. Therefore, there
should exist a range of �m in which �k�� = 0 and the non-exclusive products with v > k
are removed gradually. Eventually we will reach the stage of �k�� < 0 and there are no
non-exclusive products with v > k any more. In this stage if �m further shrinks, the least

pro�table products around the boundary �(F (k) � F (v)) + �v � � = 0 (which applies
for both v < k and v > k) should be removed. Notice that when �k � � < 0, we have
limv!k�

���v
F (k)�F (v) = 1 and limv!k+

���v
F (k)�F (v) = �1, so the products with v su¢ ciently

close to k should be excluded regardless of their �.31 This intuitive discussion is con�rmed

in the numerical examples below.

Consider the running example with uniform product space G(�; v) = �v. To make it

possible that k > v (which case we have not explored before) but in the same time k < s,

suppose F (s) = s=2, i.e. s is uniformly distributed on [0; 2]. The stocking space constraint

is more likely to bind when economies of search are stronger. So let us consider the polar

case where h0(m) = 0, i.e., h(m) is a constant. Suppose h(m) = � and � > 1
4
[1�(1� �m)2]

so that k < s.32 Figure 3 below describes, when � = 0:4, how the optimal product

31Intuitively, for the products with v slightly below k, their demand is only expanded a little via being

sold through the intermediary, and for the products with v slightly above k, they contribute little in

attracting more consumers to visit.
32When the stocking space is �m, consumers have the highest incentive to visit the intermediary if

it stocks all the products with v � 1 � �m exclusively. Therefore, if
R 1
1� �m vdv < �s or equivalently

� > 1
4 [1� (1� �m)2] given s = 2, not all consumers will visit the intermediary (i.e. k < s).
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selection varies as �m shrinks.
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(a) �m = 0:8
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(b) �m = 0:5
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(c) �m = 0:46
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(d) �m = 0:3

Figure 3: Optimal product range: the general case with �m < 1 and h(m) = 0:4

When �m is greater than about 0:65, k > 1 and so there is no region of v > k. In

this case the demand for any stocked product is expanded compared to direct sales, and

so there are no loss-making products. When �m is between about 0:65 and about 0:463,

k < 1 and so the region of v > k appears. In the same time, �k�� > 0 and so result (i) in
Proposition 3 applies: all the products in the region of v > k are stocked, but only those

with relatively low � are stocked exclusively. This is qualitatively similar to Figure 2 when

there is no stocking space limit but economies of search are relatively weak. When �m is

between about 0:463 and about 0:454, k < 1 and �k� � = 0, so result (ii) in Proposition
3 applies: some non-exclusive products in the top-right corner start to be excluded, but

there is �exibility in how to select products in this region. (In Figure 3(c) we remove

those with relatively low v.) When �m is below about 0:454, k < 1 and �k � � < 0. Then
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result (iii) in Proposition 3 applies: now there are no non-exclusive products with v > k

any more. In this case as we already pointed out the products with v close to k will all be

excluded regardless of their �. It is also worth mentioning that when �m becomes smaller,

the intermediary tends to stock more exclusive products proportionally. (The fraction

of exclusive products among all stocked products is 0, 0:3, 0:46, and 0:5, respectively, in

the above four cases in Figure 3.) This is because when the store becomes smaller, the

intermediary may need to use more exclusively available products to induce consumers to

visit.

5 Comparison With the Social Optimum

We now turn to the optimal product selection by a social planner who aims to maximize

total welfare which is de�ned as the sum of industry pro�t and consumer surplus. We

assume that the social planner can control the stocking policy q but not �rm pricing and

consumer search behavior.

As we pointed out before, if visiting the intermediary does not improve search e¢ ciency

(i.e., if h(m) = m), consumers always prefer cherry-picking from manufacturers directly.

In that case they buy a product if and only if it provides a positive net surplus v� s > 0.
While in the case with the intermediary, they are forced to buy some low-v products

with a negative net surplus in order to get other high-v products with a positive net

surplus. This observation suggests that the intermediary might be �too big�or stock too

many products exclusively, relative to the socially optimal size. But this negative e¤ect

on consumers will be mitigated by the improved search e¢ ciency when h(m) < m. On

the other hand, as we also mentioned before, consumers search too little relative to the

social optimum because they ignore the e¤ect of their search decision on pro�t. When a

product has v slightly below s, a consumer of type s will not search it in the case of no

intermediary. But from the social planner�s view she should have searched it as long as

it is socially e¢ cient (i.e. if � + v > s). Therefore, the intermediary can improve market

e¢ ciency by forcing consumers to search some low-v but socially e¢ cient products. The

following analysis will illustrate these three e¤ects. In general it is hard to compare them

analytically, though numerical examples suggest that the �rst e¤ect dominates.

Given a stocking policy q, the consumer search rule is the same as in Lemma 3. Total

welfare can then be written as

W (q) �
Z
�F (v) dG+�(q) +

Z k

0

u1 (s;q) dF (s) +

Z �s

k

u0 (s;q) dF (s) : (22)

29



The �rst term is the pro�ts of manufacturers, who always earn �F (v) regardless of

whether they sell their product by themselves or via the intermediary. The second one is

the intermediary�s pro�t, which we de�ned earlier in equation (13). The third one is the

surplus of consumers with s < k who search the intermediary, where u1 (s;q) was de�ned

earlier in equation (10). The forth one is the surplus of consumers with s � k who choose
not to visit the intermediary, where u0 (s;q) again was de�ned earlier in equation (11).

Notice that the consumers with s � k are always made (weakly) worse o¤ by the presence
of intermediary, because it restricts access to products with high v (if stocked exclusively)

which ordinarily they would like to buy from the manufacturer. On the other hand,

whether the presence of the intermediary bene�ts the consumers with s < k depends on

the strength of search economies generated by visiting the intermediary.

The social planner wishes to choose a stocking policy q in order to maximize W (q).

In the following, we focus on the case with no stocking space limit (i.e., �m = 1). The

analysis is then parallel to Section 4.1. (The case with a binding space constraint can be

dealt with similarly as in Section 4.2.) We again use m =
R
qdG to denote the measure of

products stocked by the intermediary. We have the following preliminary characterization

of the social optimum:

Lemma 6 (i) The social optimum always has a strictly positive measure of products if

h (m) = m for all m 2 [0; 1] or if h (m) < m for some m 2 (0; 1].
(ii) When the optimum has m > 0 and consumers adopt a search rule with threshold k,

(a) all products with v > k (if any) must be stocked, and for each v > k there exists w+(v)

such that product (�; v) is stocked exclusively if and only if � � w+(v); (b) among the

products with v < k (if any), for each v < k there exists w�(v) such that product (�; v) is

stocked if and only if � � w�(v).

Qualitatively the socially optimal stocking policy is like the one adopted by the in-

termediary in section 4.1. The intuition and the proof are both closely related to that of

Lemma 5. We then solve explicitly for the social planner�s optimum. As before, we treat

the consumer search rule in equation (14) and m =
R
qdG as two constraints, and let �

and � be the respective multipliers associated with these two constraints.

Proposition 4 In the general case without stocking space limit, suppose the social op-
timum has m > 0 and k 2 (0; s) (which is true if the conditions in Lemma 6 hold and
maxx

R v
x
vdG=h(

R v
x
dG) < s). Then the socially optimal product selection features either
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(i) m < 1, and among the products with v < k, only those with

� �
�(kh0(m)� v) +

R k
v
(s� v)dF (s) + (h0(m)� 1)

R k
0
sdF (s)

F (k)� F (v) (23)

are stocked and the exclusivity arrangement does not matter, and among the products with

v > k (if k < v), those with

� �
�(k � v) +

R k
v
(s� v)dF (s)

F (k)� F (v) (24)

are stocked exclusively and the others are stocked non-exclusively. In this case, the para-

meters k, �, and m solve the same system of equations as (18) - (20).

or

(ii) m = 1 (i.e., all products are stocked), and among the products with v > k (if k < v),

those with

� �
�(k � v) +

R k
v
(s� v)dF (s)

F (k)� F (v)
are stocked exclusively, and the exclusivity arrangement for the products with v < k does

not matter. In this case, � and k solve (18) and (19) with q = 1 and m = 1.

This characterization is qualitatively similar to the optimal product range in Propo-

sition 2. In particular, the parameters k, �, and m solve the same system as in the

intermediary�s problem. But this does not imply that they will have the same solution

in the two problems, because for given k, �, and m the product selection takes di¤erent

forms in the two problems. For this reason, a general comparison between the socially

optimal selection and the intermediary�s optimal selection is hard. Nevertheless for a

�xed (k; �), by comparing (17) and (24) and using the fact
R k
v
(s� v)dF (s) > 0 for v > k,

we can deduce that the intermediary stocks too many products exclusively relative to the

socially optimal size. Intuitively when the intermediary considers stocking some products

exclusively, it neglects the negative impact it has on consumers with high search costs,

who choose not to search it and therefore lose the ability to buy those products. Similarly,

for a �xed (k; �), by comparing (16) and (23) we can see that if h0(m) = 1 (i.e., if there

are no marginal economies of search), the intermediary stocks too many low-v products.

But this e¤ect can be reversed if h0(m) is su¢ ciently small.

To illustrate, we return to our running example with G(�; v) = �v and F (s) = s. We

compare the socially optimal solution with the pro�t-maximizing solution when h(m) = m

and h(m) = 0:4 + 0:5m, respectively. In the �rst example, one can check that k =

� = 1
2
(which is the same as in the intermediary�s solution) and m � 0:6875 in the
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socially optimal solution. Figure 4(a) below describes the socially optimal product range.

Compared to the intermediary�s solution, the social planner stocks fewer products overall

and fewer products exclusively, and the social planner�s product set is a strict subset of the

intermediary�s. In the second example, one can solve k � 0:440, � � 0:487 andm � 0:963.
Note that k and � are now di¤erent from those solved in the intermediary�s problem and

m is slightly smaller. Figure 4(b) below describes the socially optimal product range in

this example. Again, the social planner stocks fewer products overall and fewer products

exclusively than the intermediary, though in this example the social planner�s product set

is not exactly a subset of the intermediary�s.
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(a) h(m) = m
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(b) h(m) = 0:4 + 0:5m

Figure 4: Socially optimal product range

Finally, it is worth mentioning that although the intermediary tends to stock too

many products exclusively relative to the social optimum, banning exclusive products all

together can harm e¢ ciency unless economies of search are su¢ ciently strong. This can

be easily seen from the extreme case of h(m) = m where the intermediary will not exist

if no exclusive contracts are allowed, and this can reduce total welfare as we have seen in

the two examples in Figure 1.

6 Discussion

In this section, we �rst discuss the foundation of the (�; v) product space, and then

study an extension with upstream competition (i.e., each product having more than one

manufacturer).
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6.1 Foundation of (�; v) Product Space

We provide two classes of demand functions which can generate the (�; v) product space.

We also discuss how a product�s demand curvature or demand elasticity a¤ects where it

is located in the product space.

Demand curvature: Suppose that product i has a constant-curvature demand function:

Qi (pi) = ai

�
1� 1� �i

2� �i
(pi � �i)

� 1
1��i

; (25)

where ai > 0 denotes the scale of demand, �i � 0 is the minimum allowed price, and

�i 2 (�1; 2) is the curvature of the demand curve.33 When �i < 1, the support of price
is [�i; �i +

2��i
1��i ]; when 1 � �i < 2, the support of price is [�i;1). This is a rich class

which includes very concave �rectangular-shaped�demand when �i is su¢ ciently negative,

linear demand when �i = 0, exponential demand when �i = 1, and very convex demand

close to the original point when �i is close to 2.34

When unit cost is ci � �i, monopoly price is pmi = 1+ �i 1��i2��i +
ci

2��i . Then monopoly

pro�t and consumer surplus are respectively

�i = ai

�
1

2� �i

� 1
1��i

�
1 + (�i � ci)

1� �i
2� �i

� 2��i
1��i

;

and

vi = ai

�
1

2� �i

� 2��i
1��i

�
1 + (�i � ci)

1� �i
2� �i

� 2��i
1��i

:

Notice that both �i and vi are increasing in the demand scale parameter ai, and �i=vi =

2 � �i. For each �xed �i, we can generate a ray from the original point by varying

ai. By varying �i, we can change the slope of the ray to cover the whole quadrant R2+.
(Intuitively, when �i is lower demand is more concave and �rectangular-shaped�, such

that the �rm can appropriate more of the available surplus and so �i
vi
becomes higher.)

Consequently, in this example, the high-v and low-� loss-making products are those with

a relatively large and convex demand (i.e. those with relatively high ai and �i). While

the pro�table low-v and high-� products are those with a relatively large and concave

demand (i.e. those with relatively high ai and low �i).35

33The curvature of demand function Q(p) is de�ned as Q00 (p)Q (p) = [Q0 (p)]2. It measures the elasticity

of the slope of the inverse demand function.
34It also includes constant elasticity demand when �i =

2+�i
1+�i

2 (1; 2).
35Anderson and Renault (2003) and Weyl and Fabinger (2013) show that this insight extends beyond

the class of demands discussed here. In particular they show that in general demands that are �more

concave�are associated with a higher �i=vi ratio.
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Demand elasticity: Suppose that product i�s demand function is

Qi (pi) = ai (1� p�ii )

for pi 2 [0; 1], where ai > 0 is the scale parameter as before, and �i > 0 is now an elasticity
parameter. For any pi 2 (0; 1), the demand elasticity is

�ip
�i
i

1� p�ii
;

and it decreases in �i. When �i is close to 0, the demand is very convex and price sensitive;

when �i is large, the demand is very concave and price insensitive.

To get analytical solutions, let us assume ci = 0. The monopoly price is then pmi =

( 1
1+�i

)
1
�i , and monopoly pro�t and consumer surplus are respectively

�i =
ai�i
1 + �i

�
1

1 + �i

� 1
�i

; and vi =
ai�i
1 + �i

 
1� 2 + �i

1 + �i

�
1

1 + �i

� 1
�i

!
:

Both �i and vi increase in ai, and �i=vi increases in �i and so decreases in elasticity.36

Intuitively when demand is more elastic the monopoly price is lower, such that pro�t is

lower and consumer surplus is higher. Hence viewed in light of this class of demands,

the intermediary tends to use the products with a relatively large and elastic demand to

drive store tra¢ c, and earns pro�t from the products with a relatively large and inelastic

demand.

Discussion. Suppose � and v are determined by two product-speci�c parameters, such

as (a; �) in the above examples (assuming in the �rst example that we �x � = c = 0).

Then generically there is a one-to-one correspondence between (a; �) and (�; v), such that

each point in the (�; v) space represents a single product.37 Nevertheless, if � and v are

determined by more than two parameters like in the �rst example with product speci�c �

and c, then generically each point in the (�; v) space represents a continuum of di¤erent

products. In this case, the stocking policy function q(�; v) can take a continuous value

in [0; 1] with the interpretation that q(�; v) fraction of the products at point (�; v) are

stocked. This, however, does not a¤ect our analysis because all the objective functions in

this paper are linear in the stocking policy variables, and so we always have bang-bang

solutions.
36In this example �i=vi > 1 for any �i > 0, so it can only genearate half of the quadrant R2+.
37Notice, however, that even if products are uniformly distributed in the (a; �) space, they can be

non-uniformly distributed in the (�; v) space. That is why we consider a general distribution G.

34



6.2 Upstream competition

We now extend our model by introducing upstream competition between manufacturers

and show that our main insights are still valid. In particular we assume now that each

product is supplied by two homogeneous manufacturers. To simplify the exposition we

focus on the case of no search economies i.e. h (m) = m, where m denotes the measure of

distinct products stocked by the intermediary. (Therefore if the intermediary contracts

with two manufacturers supplying the same product, the cost of searching the interme-

diary only increases by one unit.) We also assume that the intermediary has no stocking

constraint i.e. �m = 1, and is able to o¤er both exclusive and non-exclusive contracts.

The timing closely follows that of the main model. At the �rst stage the intermediary

announces to all manufacturers its stocking intentions, and then makes public (possibly

discriminatory) o¤ers which specify both a two-part tari¤ and (non-)exclusivity. Manu-

facturers simultaneously accept or reject their o¤ers, and (when appropriate) believe that

the other manufacturer of their product will accept. At the following stages �rms set

prices and consumers search sequentially with passive beliefs and randomize whenever

indi¤erent.

Closely following Lemma 1 from earlier, we can prove that in equilibrium all sellers of a

product charge the monopoly price. The intuition is the same as before: the intermediary

uses bilaterally-e¢ cient two-part tari¤s to avoid double marginalization, and the search

friction nulli�es direct pricing competition between sellers just like in Diamond (1971).38

Consequently we can still represent products as points in a two-dimensional (�; v) space.

In the spirit of our earlier analysis, qE(�; v) 2 f0; 1g indicates whether product (�; v) is
stocked exclusively by the intermediary i.e. consumers cannot buy it elsewhere. That is,

qE(�; v) = 1 if and only if the intermediary contracts with both manufacturers exclusively.

Similarly, qNE(�; v) 2 f0; 1g indicates whether product (�; v) is stocked non-exclusively
by the intermediary i.e. consumers also have the opportunity to buy it from a manufac-

turer. That is, qNE(�; v) = 1 if and only if the intermediary contracts with at least one

manufacturer non-exclusively. Hence

q (�; v) = qE(�; v) + qNE(�; v) 2 f0; 1g

indicates whether or not the intermediary stocks product (�; v). It is straightforward to see

38One subtle di¤erence is that here we need f(0) = 0 to sustain monopoly pricing when the manufac-

turers both sell direct to consumers. This condition is satis�ed as long as s is bounded away from 0. In

the uniform example below, for convenience we still assume s � U [0; 1], but this can be regarded as the
limit case of s � U [�; �+ 1] with �! 0.
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that given monopoly pricing, the payo¤s from respectively searching and not searching the

intermediary are the same as those in equations (10) and (11) with h(m) = m. Therefore

Lemma 3 implies that provided
R
qEdG > 0 and �s � �v, there is a unique cuto¤ k 2 (v; �v)

satisfying (12) with h(m) = m, such that consumers search the intermediary if and only

if s < k. For convenience, we rewrite it here asZ
v<k

q (v � k) dG+
Z
v>k

qE (v � k) dG = 0 : (26)

Notice that given that the two manufacturers for each product are homogeneous, here only

the stocking policy at the product level (instead of at the manufacturer level) matters for

consumer search decision.

Now consider how much the intermediary must compensate manufacturers (on top of

the production cost) in order to stock their product. The following is a useful preliminary

result:

Lemma 7 (i) If the intermediary contracts with both manufacturers of a product non-
exclusively, it does not need to compensate them.

(ii) If the intermediary contracts with both manufacturers of a product exclusively, it needs

to compensate each by an amount max f0; � [F (v)� F (k)]g.
(iii) It is (weakly) dominated for the intermediary to contract with only one manufacturer

of a product, or to contract with both but only exclusively with one of them.

We explain parts (i) and (ii), and leave the details of part (iii) to the appendix. First

consider products with v < k. Provided one manufacturer supplies the intermediary, the

other manufacturer expects to make no sales and is therefore willing to also supply the

intermediary at marginal cost. Second consider products with v > k. Provided one man-

ufacturer supplies the intermediary, the other manufacturer is unable to sell its product

to consumers with s < k. If the intermediary contracts with both manufacturers non-

exclusively, each manufacturer earns 1
2
� [F (v)� F (k)] irrespective of whether it accepts

or rejects the intermediary�s contract. Hence in this case each manufacturer is willing

to provide its product to the intermediary at marginal cost. If instead the intermediary

wishes to have exclusive sales rights, a manufacturer that rejects its contract becomes a

monopolist over consumers with s 2 (k; v) and therefore earns � [F (v)� F (k)]. Hence
in this case each manufacturer must be compensated by that amount.

Lemma 7 implies that the intermediary only needs to consider three options: either

not stock a product, or stock it according to options (i) or (ii). Whenever it stocks a

product, the intermediary contracts with both the manufacturers so as to induce them to
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accept lower compensation. It is now without loss of generality to use qNE(�; v) 2 f0; 1g
to indicate whether the intermediary contracts with both manufacturers non-exclusively.

The intermediary�s pro�t function is thenZ
v<k

q�F (k)dG+

Z
v>k

qNE�F (k)dG+

Z
v>k

qE�[3F (k)� 2F (v)]dG : (27)

According to Lemma 7, no compensation beyond the production cost is needed for stocking

a product with v < k (regardless of whether it is stocked exclusively or non-exclusively)

or stocking a product with v > k non-exclusively. For a given k, these products are

now cheaper to stock than in the basic model due to the upstream competition. For

an exclusively stocked product with v > k, the intermediary earns gross pro�t �F (k)

but needs to pay 2� [F (v)� F (k)] to its manufacturers. The compensation to each

manufacturer is also lower than in the basic model, but the intermediary now needs

to compensate two manufacturers instead of one. Whether it is now cheaper or more

expensive to stock these exclusive products depends on v. Those with F (v) < 2F (k)

become cheaper to stock (and can even become pro�t generators), while those with F (v) >

2F (k) (if any) become more expensive to stock.

The intermediary maximizes (27) subject to the search constraint (26). The La-

grangian function of this optimization problem is

L =

Z
v<k

q [�F (k) + � (v � k)] dG+
Z
v>k

qNE�F (k) dG

+

Z
v>k

qE f� [3F (k)� 2F (v)] + � (v � k)g dG : (28)

It is easy to argue that some products must be stocked exclusively in the optimal solution,

so we must have an interior solution k 2 (v; �v). Then the �rst-order condition of (28)
with respect to k yields

� = f (k)

R
v<k

q�dG+
R
v>k

qNE�dG+ 3
R
v>k

qE�dGR
v<k

qdG+
R
v>k

qEdG
; (29)

from which we deduce � > 0. Then it is straightforward to derive the following result.

Proposition 5 The optimal product selection with upstream competition is characterized
as follows:

(i) The intermediary buys products with v < k from both manufacturers if

� � �k � v
F (k)

;
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and otherwise does not stock them.

(ii) The intermediary buys all products with v > k from both manufacturers. It contracts

with the manufacturers exclusively if

� � �

2

v � k
F (v)� F (k) ;

and otherwise contracts with them non-exclusively. The parameters k and � solve equa-

tions (26) and (29).

Our predictions about the intermediary�s optimal product range are thus qualitatively

robust to the introduction of upstream competition. Nevertheless notice that for a �xed

(k; �), both the stocking region of v < k and the non-exclusive region of v > k expands

compared to the basic model. This is because these products are now cheaper to acquire

as we have explained. While the exclusive region of v > k shrinks since the boundary in

part (ii) is lower than (17). This is because stocking the products with v > k exclusively

is now relatively less pro�table compared to stocking them non-exclusively. Of course

considering upstream competition will change (k; �) as well. Once that is taken into

account, it appears no general conclusions can be drawn. Figure 5 plots the optimal

product range in the example with uniform product space when F (s) = s and F (s) =
p
s,

respectively. In former case, the intermediary stocks fewer exclusive products and also

fewer products overall compared to the basic model, while the opposite is true in the

latter case.
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Figure 5: Optimal product range with upstream competition

However, as expected in both cases the intermediary�s pro�t is higher than in the ba-

sic model, since the upstream competition brings down the overall compensation needed
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for the manufacturers. The pro�t increases from 1
32
to about 0:2 in the �rst case, and

from about 0:036 to about 0:305 in the second. The main source of the signi�cant pro�t

improvement is the reduced compensation to the manufacturers, instead of the reop-

timization of the product selection. For example, in the �rst case if the intermediary

simply adopted the same stocking policy as in the basic model, its pro�t would already

increase to 0:1875. Reoptimization further improves the pro�t, but only by a relatively

small amount. Finally, notice that this also implies that the intermediary has a strong

incentive to produce a private label of a product, since it has a similar e¤ect as introducing

upstream competition in reducing the compensation to the manufacturer.

7 Conclusion

Product range is an important choice for retailers who intermediate between manufac-

turers and consumers. This paper has developed a framework for studying the optimal

product range choice of a multiproduct intermediary when consumers need a basket of

products and face shopping frictions (both of which are natural features of retail markets).

We have shown that (i) whenever the intermediary can use exclusive contracts, it exists

pro�tably even if it does not improve search e¢ ciency for consumers; (ii) the interme-

diary uses exclusively stocked products that consumers value highly in order to increase

search, and makes pro�t from non-exclusively stocked products that are relatively cheap

to buy from manufacturers; (iii) the intermediary tends to be too big and stock too many

products exclusively compared to the socially optimal size.

This paper clearly has a few limitations which we hope to address in future work.

First, we have intentionally simpli�ed the pricing decisions of manufacturers and the

intermediary by assuming two-part-tari¤ contracts and unobservability of prices before

consumers search. This has enabled us to study the optimal product range and exclusivity

in a tractable way. Second, we have focused on a monopoly intermediary. Thus we

have not studied how competition among intermediaries might shape their product range

choice, which is certainly an important dimension in reality. Third, we have assumed

that each product has only one manufacturer or two homogenous manufacturers. It

will be interesting to consider multiple manufacturers for each product which supply

di¤erentiated versions. We will then be able to study both the breadth and depth of an

intermediary�s product range choice.

Finally, we want to point out that the framework developed in this paper could be

modi�ed to study other types of intermediary. For example, a key decision for a shopping
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mall is what stores it should include. If we regard each store as a product category, the

problem becomes similar to product range choice and it is important to take into account

the externalities each store has on other stores. Of course a shopping mall is more like a

platform which does not possess the products and allows decentralized pricing. But the

situation is actually similar to our model if each store in the mall sets the same price as in

their own outlets. Another possible application is intermediaries in international trade.39

In that case retailers in a destination country act as consumers in our model and have

demand for multiple products. Direct trade can be too costly for some manufacturers

and retailers, and so they choose to use trade intermediaries. The range of products an

intermediary handles can be an important factor retailers care about.

Appendix

Proof of Lemma 1. (i) Consider an equilibrium in which a set AM of products

are sold only by their manufacturers, a set AE of products are stocked exclusively by the

intermediary, and a set ANE of products are stocked non-exclusively by the intermediary.

Let pl be the equilibrium price of product l 2 AM , pj be the equilibrium price of product

j 2 AE, and pi;M and pi;I be the equilibrium price of product i 2 ANE at its manufacturer
and the intermediary, respectively. Note that if pi;I > pi;M it is possible that a consumer

visits the intermediary which stocks product i but buys product i from its manufacturer.

However if pi;I � pi;M it is impossible that in equilibrium a consumer visits both the

intermediary and the manufacturer.

(i-1) As in the case of no intermediary, it is easy to see pl = pml for l 2 AM given our

informational assumption.

(i-2) We then show pj = pmj for j 2 AE. Suppose the wholesale price of prod-

uct j is � j. The hold-up logic implies that the intermediary must charge p�j (� j) =

argmaxp (p� � j)Qj (p). (Note that p�j (cj) = pmj .) Since the intermediary makes a take-it-
or-leave-it o¤er, it will optimally o¤er a lump-sum fee Tj = �jF (vj)�(� j � cj)Qj(p�j (� j))�
� to manufacturer j, where � is the measure of consumers who visit the intermediary and

which only depends on the expected surplus from visiting the intermediary. (In particu-

lar, given consumers do not observe the contract details, � is independent of the actual

wholesale price � j.) Hence the intermediary�s pro�t from stocking product j exclusively

39See, e.g., Bernard et al. (2010) and Ahn et al. (2011) for empirical evidence on trade intermediaries

in the US and China, respectively.
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is

� � [p�j (� j)� � j]Qj(p�j (� j))� Tj = � �
�
p�j (� j)� cj

�
Qj(p

�
j (� j))� �jF (vj) : (30)

This is maximized at p�j (� j) = pmj such that the intermediary should o¤er a wholesale

price � j = cj.

(i-3) We �nally show pi;I = pi;M = pmi for i 2 ANE. The proof consists of a few steps.
Step 1: pi;M � pmi .
If in contrast pi;M > pmi in equilibrium, then reducing pi;M slightly will be a pro�table

deviation. First, the number of consumers who buy product i from respectively the

intermediary and manufacturer i does not change. For those consumers who visit the

intermediary and buy product i there, they do not observe manufacturer i�s price reduction

and so still buy from the intermediary. For those consumers who visit the intermediary

�rst and then come to manufacturer i, they will be surprised by the price reduction but

will still buy from manufacturer i as originally planned. The number of such consumers

does not increase since their search decision is based on expected equilibrium prices. For

those who visit manufacturer i �rst, their initial plan must be to buy product i at the

manufacturer (otherwise they would have no reason to visit it). Again a private price

reduction will not increase the number of such consumers, and once they arrive they buy

as planned (given passive beliefs). Second then, manufacturer i earns strictly more pro�t

from its direct sales to consumers, and earns the same pro�t from sales made through the

intermediary.

Step 2: pi;M = pmi .

If in contrast pi;M < pmi in equilibrium, then increasing pi;M slightly will be a pro�table

deviation. Consider the following two cases separately:

(a) pi;I > pi;M . Consider a slight increase to pi;M + " < minfpi;I ; pmi g. For those who
visit the intermediary �rst and then come to manufacturer i (based on the expected price),

they will be surprised by manufacturer i�s price increase but will still buy from it since

its price remains strictly below pi;I . For those who visit manufacturer i �rst (again, based

on the expected price), they will buy as planned given the new price is still lower than

pi;I . Therefore, the number of consumers who buy at manufacturer i remains unchanged,

but the pro�t from each of them is now higher.

(b) pi;I � pi;M . For those who visit the intermediary �rst, they will not come to

manufacturer i according to their beliefs, so they are irrelevant for a private price devi-

ation. For those who plan to visit manufacturer i, they must not visit the intermediary

on equilibrium path. If pi;M is slightly increased, will some of them switch to visiting
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the intermediary? The answer is no, because in our continuum framework this single

price deviation has a zero-measure impact on the consumer surplus from not visiting the

intermediary and so will not change consumer search behavior.40 Therefore again a small

price increase will improve manufacturer i�s pro�t.

Step 3: pi;I � pmi .
Suppose in contrast pi;I > pmi (= pi;M) in equilibrium. In this case, there are two

possible types of consumer who buy product i. Let �i;I be the measure of consumers

who buy i at the intermediary, and let �i;M be the measure of consumers who buy i at

manufacturer i. (Some of the latter consumers may visit the intermediary but buy from

the manufacturer.) Consider two cases separately:

(a) � i � ci. Then a small reduction of pi;I will be a pro�table deviation. Slightly

decreasing pi;I will weakly increase �i;I . At the same time the intermediary makes a

higher pro�t from each such consumer given that p�i (� i) � pmi < pi;I .
(b) � i > ci. In this case we argue that a deviation to p0i;I = pmi (together with an

adjustment of the two-part tari¤) will be pro�table. In the hypothetical equilibrium, we

must have

Ti + �i;I � (� i � ci)Qi(pi;I) + �i;M � �i = �iF (vi) :

Then the intermediary�s pro�t from product i is

�i;I � (pi;I � � i)Qi(pi;I)� Ti = �i;I � (pi;I � ci)Qi(pi;I) + �i;M � �i � �iF (vi) :

If pi;I is reduced to pmi , (pi;I � ci)Qi(pi;I) will increase to �i, the per-consumer monopoly
pro�t, and �i;I + �i;M will increase at least weakly.41 Then the pro�t must be improved.

Step 4: pi;I = pmi .
Suppose in contrast pi;I < pmi (= pi;M) in equilibrium. Then if a consumer visits the

intermediary, she will not visit manufacturer i. In this case it is then impossible that

40With a discrete number of products, the same result holds by a slightly di¤erent argument. Consider

a consumer who is ex ante indi¤erent between whether or not to visit the intermediary. If she visits

manufacturer i and �nds pi;M slightly higher than expected, will she now want to visit the intermediary?

Since the cost of visiting the manufacturer is already sunk, she actually would have a strict preference

for not visiting the intermediary if pi;M remained the same as expected. Therefore the same is true if

pi;M is only slightly higher than she expected.
41In fact, it can be shown that �i;I+�i;M remains unchanged. The consumers who buy product i can be

divided into three groups: some don�t visit the intermediary and buy i at manufacturer i; some visit the

intermediary but buy i at manufacturer i; the rest visit the intermediary and buy i there. The deviation

does not a¤ect the �rst group. The deviation may a¤ect the distribution of consumers between the second

and the third group, but does not a¤ect the total number of consumers who visit the intermediary which

only depends on the expected prices.
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� i � ci. Otherwise the intermediary could improve its pro�t from product i by raising

pi;I slightly. (Note that this deviation does not a¤ect the number of consumers who visit

the intermediary, and once they arrive they will still buy product i at the intermediary

as long as pi;I is still below pi;M .)

Now consider the possibility of � i < ci. Then we must have pi;I = p�i (� i) in an

equilibrium. Then a deviation to � 0i = ci and p0i;I = pmi will be pro�table. (Given the

contract details are unobservable to consumers, such a deviation will not a¤ect the number

of consumers who visit the intermediary and buy i.)

This completes the proof for pi;I = pi;M = pmi for i 2 ANE.
(ii) The equilibrium two-part tari¤ for product j 2 AE has been proved in (i-2)

above. Now consider the equilibrium two-part tari¤ for product i 2 ANE. It is easy to
see that � i < ci is impossible. Otherwise the intermediary would have an incentive to

reduce its price for product i to p�i (� i). However, we cannot rule out the possibility of

� i > ci (together with Ti such that manufacturer i�s pro�t is �iF (vi)). The reason is

that if the intermediary raises its price for product i above pmi , some consumers who visit

the intermediary and initially planned to buy i there may then switch to buying from

manufacturer i. If the number of such consumers is large enough (which requires f(s) to

be large enough for small s), the intermediary does not dare to raise its price.

Fortunately, this indeterminacy of the contract details does not matter for our subse-

quent analysis of optimal product selection. Suppose in an equilibrium � i 6= ci for some
i 2 ANE. The lump-sum fee Ti satis�es

Ti + �i;I � (� i � ci)Qi(pi;I) + �i;M � �i = �iF (vi) :

Note that given the monopoly pricing result, �i;I is also the number of consumers who visit

the intermediary which is denoted by �I . Then the intermediary�s pro�t from stocking

product i is

�I � (pmi � � i)Qi(pmi )� Ti = �I � (pmi � ci)Qi(pmi ) + �i;M � �i � �iF (vi)
= �i [�I � (F (vi)� �i;M)] : (31)

Since consumer search and purchase behavior only depends on the retail prices, this

pro�t is the same as if � i = ci. Therefore, without loss of generality, we can focus on a

contracting outcome with � i = ci.

Proof of Lemma 2. (i) We �rst show that the intermediary can make a positive

pro�t by stocking a positive measure of products. Consider two interior points in
: (�1; ~v)
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and (�2; ~v) with �1 > �2. Let A1 = [�1 � �; �1] � [~v � �; ~v] and A2 = [�2; �2 +�(v)] �
[~v; ~v + �], where �(v) is uniquely de�ned for each v 2 [~v; ~v + �] byZ �1

�1��
g (�; 2~v � v) d� =

Z �2+�(v)

�2

g (�; v) d� : (32)

Convexity of 
 implies that we have A1; A2 � 
 for su¢ ciently small � � 0 and � > 0.

Notice that �(v) is constructed in such a way that for each v in A2, the mass of products

stocked is the same as that of the �mirror�valuation 2~v � v in A1. This implies that
the average v of the products in A1 [ A2 is always ~v, and so a consumer will visit the
intermediary, when it stocks A = A1 [ A2, if and only if s < ~v.
Fix a su¢ ciently small � such that �1 � � > �2 + �(v) for all v 2 [~v; ~v + �]. The

intermediary�s pro�t from stocking A = A1 [ A2 is

�(�) =

Z ~v

~v��

Z �1

�1��
� [F (~v)� F (v)] dG+

Z ~v+�

~v

Z �2+�(v)

�2

� [F (~v)� F (v)] dG :

Straightforward calculations reveal that �(0) = �0 (0) = 0. However,

�00 (0) = f (~v)

"Z �1

�1��
�g (�; ~v) d� �

Z �2+�(~v)

�2

�g (�; ~v) d�

#

> f (~v)

"
(�1 � �)

Z �1

�1��
g (�; ~v) d� � (�2 +�(~v))

Z �2+�(~v)

�2

g (�; ~v) d�

#

= f (~v) [(�1 � �)� (�2 +�(~v))]
Z �1

�1��
g (�; ~v) d� > 0 ;

where the second equality used (32) evaluated at v = ~v. Therefore, �(�) > 0 for � in a

neighborhood of 0.

(ii) We then show that stocking all the products is not the most pro�table strategy. Let

v̂ =
R


vdG. Consider B1 = [�1 � �; �1]� [v̂; v̂ + �] and B2 = [�2; �2 +�(v)]� [v̂ � �; v̂],

where �1 > �2, and where �(v) is uniquely de�ned for each v 2 [v̂ � �; v̂] byZ �1

�1��
g (�; 2v̂ � v) d� =

Z �2+�(v)

�2

g (�; v) d� : (33)

Convexity of 
 implies that B1; B2 � 
 for su¢ ciently small � � 0 and � > 0. Similarly
as above, the average v of the products in B1 [ B2 is always v̂, and so the average v in
A = 
n (B1 [B2) is v̂ as well. Then a consumer will visit the intermediary, when it stocks
A = 
n (B1 [B2), if and only if s < v̂.
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Fix a su¢ ciently small � such that �1 � � > �2 + �(v) for all v 2 [v̂ � �; v̂]. The
intermediary�s pro�t from stocking A = 
n (B1 [B2) is

�̂ (�) = �̂�
Z v̂+�

v̂

Z �1

�1��
� [F (v̂)� F (v)] dG�

Z v̂

v̂��

Z �2+�(v)

�2

� [F (v̂)� F (v)] dG ;

where �̂ = �̂ (0) is the pro�t from stocking 
. Simple calculations reveal that �̂0 (0) = 0.

However, similar as in (i),

�̂00 (0) = f (v̂)

"Z �1

�1��
�g (�; v̂) d� �

Z �2+�(v̂)

�2

�g (�; v̂) d�

#
> 0

by using (33) evaluated at v = v̂. Therefore, �̂ (�) > �̂ for � in a neighborhood of 0.

Proof of Proposition 1. It remains to prove that (8) and (9) have a solution with

k 2 (v; v).42 Let �(v; k) � k�v
F (k)�F (v) .

We �rst claim that for any k 2 (v; v), (9) has a unique solution

�(k) 2
�

�

maxv �(v; k)
;

�

minv �(v; k)

�
and �0 (k) 2 (0;1). The proof is as follows. The left-hand side of (9) is strictly negative
when �maxv �(v; k) � �, because then v � k for all products in I (k; �) and v < k for

a strictly positive measure of them. The left-hand side of (9) is strictly positive when

�minv �(v; k) � � and the reasoning is the same. The left-hand side of (9) is also strictly
increasing in � in the above range, since as � increases the top-left region in I(k; �) with

v � k < 0 shrinks while the bottom-right region with v � k > 0 expands. Uniqueness

of � (k) then follows. De�ne �(v) = limk!v �(k) and �(v) = limk!v �(k). We must have

�(v)�(v; v) � � and �(v)�(v; v) � � for any v (or except for a zero-measure set). Notice
also that the left-hand side of (9) is C1 in (�; k), so the implicit function theorem implies

that �(k) is di¤erentiable. �0 (k) 2 (0;1) can be veri�ed by direct computation.
Now consider (8) with � replaced by �(k):Z

I(k;�(k))

(f(k)� � �(k))dG = 0 : (34)

We show that it has a solution k 2 (v; v). Consider the following di¤erentiable function
of k:

�(k) =

Z
I(k;�(k))

[�(F (k)� F (v)) + �(k)(v � k)] dG :

42In numerical examples we �nd that the system has a unique solution with k 2 (v; v), though we have
been unable to formally prove uniqueness.
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When k = v or v, I(k; �(k)) is an empty set and so �(v) = �(v) = 0. According to the

construction of I(k; �) and the de�nition of �(k), �(k) > 0 for k 2 (v; v). Therefore by
the mean-value theorem �0(k) = 0 must have a solution in (v; v). On the other hand, one

can verify that �0(k) equals the left-hand side of (34) by using the de�nition of �(k) and

the construction of I(k; �). Then (34) must have a solution k 2 (v; v).

Proof of Lemma 3. The di¤erence in payo¤ between (10) and (11) is

�(s) =

Z
qvdG� h(

Z
qdG)s�

Z
v>s

qNE (v � s) dG : (35)

(We have used q�qE = qNE.) Notice that �(0) � 0, and �(s) is weakly concave because

�0(s) = �h(
Z
qdG) +

Z
v>s

qNEdG

is weakly decreasing in s.

(i) No consumer visits the intermediary (i.e. k = 0) if and only if �(s) � 0 for all

s > 0. A necessary and su¢ cient condition for this is �(0) = 0 and �0 (0) � 0, which is
equivalent to the conditions stated in the lemma.

(ii) All consumers visit the intermediary (i.e. k > �s) if and only if �(s) > 0 for all

s > 0. A necessary and su¢ cient condition for this is �(�s) > 0, which simpli�es to the

condition in the lemma.

(iii) Finally in all other cases, �(s) > 0 for s in a neighborhood of 0, and �(�s) � 0, so
given that �(s) is weakly concave consumers use a cut-o¤ strategy. Consumers strictly

prefer visiting the intermediary if they have s < k, where k solves �(k) = 0. (12) is

just a rewriting of �(k) = 0. In this case, k < v if and only if �(v) < 0 which equalsR
qvdG� h(

R
qdG)v < 0.

Proof of Lemma 4. When h(m) = m for all m 2 [0; �m], by a similar argument as in
the simple case we can show that the intermediary can make a strictly positive pro�t by

stocking some products exclusively. (Note that the set of exclusive products constructed

in Lemma 2 can be arbitrarily small.)

Now consider the case of h(m) < m for some m 2 (0; �m].43 We show that the

intermediary can now makes a strictly positive pro�t by stocking some products non-

exclusively. Consider a product set A � 
 such that
R
A
dG = m and

R
A\fv<ag dG > 0

for any a > v. Such a set A always exists (e.g. when A is convex and minv2A v = v).

43In this case, it is possible that h(0) > 0. Then the approach in Lemma 2 does not apply because

k ! 0 when the measure of stocked products goes to 0. That is why we adopt a di¤erent approach.
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Suppose now the intermediary stocks all products in A non-exclusively (i.e., q = qNE = 1

only for (�; v) 2 A). Then from (35) we can see �(0) = 0, and

�0(s) = �h(m) +m > 0

for all s 2 [0; v]. This implies k > v. From (13), it is ready to see that the intermediary�s

pro�t is
R
A\fv<kg �[F (k)� F (v)]dG > 0.

Proof of Lemma 5. (a) Suppose k < �v so that there are products with v > k.

Suppose in contrast that in the optimal solution q, q = 0 for a strictly positive measure

of products with v > k. Denote this set of products by B. Consider a new stocking policy

~q such that

~q(�; v) =

(
1 if (�; v) 2 B
q(�; v) otherwise

and ~qE = qE. (That is, the products in B are now stocked non-exclusively.) Let ~k be the

new consumer search threshold associated with ~q. We aim to show that this new stocking

policy is more pro�table than q and so a contradiction arises. We can see from (13) that

this is true if ~k � k, or equivalently if ~�(k) � �(k), where ~�(�) is (35) associated with
the new stocking policy. Using the construction of ~q and the de�nition of �(�) in (35),
one can check that

~� (k)��(k) =

Z
B

(1� q)vdG� [h(
Z
~qdG)� h(

Z
qdG)]k �

Z
B

(1� q)(v � k)dG

=

�Z
B

(1� q)dG� [h(

Z
~qdG)� h(

Z
qdG)]

�
k :

Since
R
~qdG�

R
qdG =

R
B
(1� q)dG and h0 (m) � 1 for all m, we have ~� (k)��(k) � 0.

Therefore, the proposed new stocking policy is a pro�table deviation, and so in the optimal

solution we must have q = 1 for all v > k.

We now prove the second part in result (a). Suppose in contrast that in the optimal

solution q, there is a strictly positive measure of v > k such that for each of these v, there

exist �0 > �00 such that qE (�0; v) = 1 and qNE (�00; v) = 1 (i.e., some high-� products are

stocked exclusively while some low-� products are stocked non-exclusively). Denote this

set of v by V . Now �x the stocking policy for all products with v < k, but for those with

v > k de�ne a new policy ~q with

~qE(�; v) = 1 if � � ~� (v) and ~qNE(�; v) = 1 if � > ~� (v) ;

where ~� (v) is the unique solution to
R ~�(v)
�(v)

g (�; v) d� =
R ��(v)
�(v)

qE(�; v)g (�; v) d�. (That is,

for each v > k, the mass of exclusively stocked products in the original stocking policy is
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shifted to the products with the lowest possible �.) By construction this does not a¤ect

consumer search behavior (so ~k = k) since they only care about v. Then for each v > k,

we haveZ ��(v)

�(v)

qE (�; v)� [F (k)� F (v)] g (�; v) d� �
Z ��(v)

�(v)

~qE (�; v)�[F (~k)� F (v)]g (�; v) d� ;

with strict inequality for v 2 V . That is, the intermediary makes less loss from those

products with v > k under the new policy. This improves its pro�t, and so we have a

contradiction.

(b) Suppose that k > v so that there are products with v < k. Suppose in contrast

that in the optimal solution q, there is a strictly positive measure of v < k such that for

each of these v, there exists some �0 < �00 such that q (�0; v) = 1 and q (�00; v) = 0 (i.e.,

some low-� products are stocked while some high-� products are not). Denote this set of

v by V . Now �x the stocking policy for products with v > k, but for products with v < k

de�ne a new policy with

~q (�; v) =

(
1 if � � ~� (v)
0 if � < ~� (v)

;

where ~� (v) is the unique solution to
R ��(v)
~�(v)

g (�; v) d� =
R ��(v)
�(v)

q (�; v) g (�; v) d�. (That is,

for each v < k, the mass of stocked products in the original stocking policy is shifted to

the products with the highest possible �.) Similarly as before, by construction this does

not a¤ect consumer search behavior (so ~k = k). Then for each v < k, we haveZ ��(v)

�(v)

q (�; v)� [F (k)� F (v)] g (�; v) d� �
Z ��(v)

�(v)

~q (�; v)�[F (~k)� F (v)]g (�; v) d� ;

with strict inequality for v 2 V . That is, the intermediary makes higher pro�t from those
products with v < k under the new policy. This is a contradiction.

Proof of Proposition 2. We �rst consider the case where m < 1 in the optimal

solution. Then the �rst-order condition with respect to m is � = �kh0(m). We use this

to replace � in our analysis. The �rst-order condition with respect to k yields (19). The

other two equations (18) and (20) are simply the two constraints. Both k and � are

positive. From (15) it is ready to see that for v < k, q = 1 if and only if

�(F (k)� F (v)) + �v � � � 0, � � � h
0(m)k � v

F (k)� F (v) ;

and the exclusivity arrangement does not matter. For v > k, notice that qE = 1 and

qNE = 1 are mutually exclusive, and �k � � = �k(1� h0(m)) � 0. Then we deduce that
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qE = 1 if

�(F (k)� F (v)) + �v � � � �k � �, � � � k � v
F (k)� F (v) ;

and qNE = 1 otherwise.

The case with m = 1 (so q = 1 everywhere) is simple. For v < k, again the exclusivity

arrangement does not matter. For v > k, the optimal exclusivity is determined the same

as above.

Proof of Proposition 3. From (21) it is ready to see that for v < k, q = 1 if and

only if

� � �� �v
F (k)� F (v) ;

and the exclusivity arrangement does not matter. Now consider v > k if k < v in the

optimal solution:

(i) If �k�� > 0 in the optimal solution, qE and qNE are determined exactly the same
as in the case with an unlimited stocking space. That is, qE = 1 if

� � �(k � v)
F (k)� F (v) ; (36)

and qNE = 1 otherwise.

(ii) If �k � � = 0 in the optimal solution, qE = 1 if �(F (k) � F (v)) + �v � � � 0,

or equivalently if (36) holds as � = �k. The intermediary is indi¤erent in how to select

the non-exclusive products among the others, as long as the mass of them can satisfy

�k � � = 0.
(iii) If �k � � < 0 in the optimal solution, it is clear that qNE = 0, and qE = 1 if

�(F (k)� F (v)) + �v � � � 0, or equivalently if

� � �� �v
F (k)� F (v) :

Finally, the parameters �, � and k solve the system of the k constraint, the �rst-order

condition with respect to k, and the space constraint. That is just (18)-(20) with m

replaced by �m. (In the case of �k � � = 0, we have an additional equation, but in that
case to pin down the region of non-exclusive products with v > k, we also have another

parameter to determine if the region is parameterized by one parameter like we will do

in the numerical example below.)

Proof of Lemma 6. (i) The proof for the case h (m) = m for all m 2 [0; 1] is very
similar to the proof of Lemma 2 and hence is omitted. In the case where h (m) < m for
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somem 2 (0; 1], note that if the intermediary stocks a massm of products non-exclusively,
its pro�t is strictly higher (by Lemma 5) and consumers are no worse o¤ since they can

still buy every product from the manufacturer.

(ii-a) Suppose k < �v so that there are products with v > k. Suppose in contrast that

in the optimal solution q, q = 0 for a strictly positive measure of products with v > k.

Denote this set of products by B. Consider a new stocking policy ~q such that

~q(�; v) =

(
1 if (�; v) 2 B
q(�; v) otherwise

and ~qE = qE. In the proof of Lemma 5 we showed that the intermediary�s pro�t is weakly

higher under ~q. Observe also that u0 (s;q) is unchanged, so consumers with s > k are

weakly better o¤ under ~q. Hence it remains to show that u1 (s;q) is weakly higher under

~q for all s < k. To prove this, notice that following the logic of the proof of Lemma 5,

u1 (s; ~q)� u1 (s;q) =
�Z

B

(1� q)dG� [h(

Z
~qdG)� h(

Z
qdG)]

�
s ;

which is weakly positive since
R
~qdG �

R
qdG =

R
B
(1 � q)dG and h0 (m) � 1 for all m.

Since all parties weakly bene�t from ~q we have a contradiction.

We now prove the second part in result (a). Suppose in contrast that in the optimal

solution q, there is a strictly positive measure of v > k such that for each of these v, there

exist �0 > �00 such that qE (�0; v) = 1 and qNE (�00; v) = 1. Denote this set of v by V . Now

�x the stocking policy for all products with v < k, but for those with v > k de�ne a new

policy ~q with

~qE(�; v) = 1 if � � ~� (v) and ~qNE(�; v) = 1 if � > ~� (v) ;

where ~� (v) is the unique solution to
R ~�(v)
�(v)

g (�; v) d� =
R ��(v)
�(v)

qE (�; v) g (�; v) d�. By

construction u0 (s; :) and u1 (s; :) are unchanged since consumers only care about v, hence

consumer surplus is unchanged. However in the proof of Lemma 5 we showed that the

intermediary�s pro�t is higher under ~q, hence we have a contradiction.

(ii-b) Suppose that k > v so that there are products with v < k. Suppose in contrast

that in the optimal solution q, there is a strictly positive measure of v < k such that for

each of these v, there exists some �0 < �00 such that q (�0; v) = 1 and q (�00; v) = 0. Denote

this set of v by V . Now �x the stocking policy for products with v > k, but for products

with v < k de�ne a new stocking policy

~q (�; v) =

(
1 if � � ~� (v)
0 if � < ~� (v)

;
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where ~� (v) is the unique solution to
R ��(v)
~�(v)

g (�; v) d� =
R ��(v)
�(v)

q (�; v) g (�; v) d�. Similarly

as before, u0 (s; :) and u1 (s; :) are unchanged hence consumer surplus is unchanged. How-

ever in the proof of Lemma 5 we showed that the intermediary�s pro�t is higher under ~q,

hence we have a contradiction.

Proof of Proposition 4. Substituting the expressions for �(q), u1 (s;q) and

u0 (s;q) into equation (22) yields

W (q) =

Z
(1� q)

Z v

0

(� + v � s)dF (s)dG+
Z
q(� + v)F (k)dG

�h(m)
Z k

0

sdF (s) +

Z
v>k

qNE

Z v

k

(� + v � s)dF (s)dG : (37)

The �rst term is the surplus generated by the products not stocked by the intermediary.

The second and third terms are the surplus generated by the products stocked in the

intermediary and purchased by consumers with s < k who visit the intermediary. The �nal

term is the surplus generated by the products non-exclusively stocked in the intermediary

and purchased by consumers with s > k directly from their manufacturers.

MaximizingW (q) is the same as maximizingW (q)�W (0), the welfare improvement
by the intermediary, where W (0) =

R R v
0
(� + v � s) dF (s) dG is the total welfare when

there is no intermediary. After some algebraic manipulations, we can write the Lagrange

function as follows:

L =

Z
v<k

q[(� + v) [F (k)� F (v)] + �v � �+
Z v

0

sdF (s)]| {z }
[1]

dG

+

Z
v>k

fqE[(� + v) [F (k)� F (v)] + �v � �+
Z v

0

sdF (s)]| {z }
[2]

+ qNE[�k � �+
Z k

0

sdF (s)]| {z }g
[3]

dG

�h(m)[�k +
Z k

0

sdF (s)] + �m :

Consider �rst the case of m < 1 in the optimal solution. The �rst-order condition

with respect to m yields � = h0(m)[�k +
R k
0
sdF (s)]. Proceeding as in the intermediary�s

problem, we can see that q = 1 for v < k if and only if [1] � 0. Using F (k) � F (v) =R k
v
dF (s) and the above expression for �, one can verify that this is equivalent to (23).

The exclusivity arrangement does not matter. For v > k, notice that qE = 1 and qNE = 1

are mutually exclusive, and [3] � 0 given h0(m) � 1. Then qE = 1 if [2] � [3], which is
equivalent to (24), and qNE = 1 otherwise. The �rst-order condition with respect to k
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takes the same form as in the intermediary�s problem, so the parameters k, � and m solve

the same system of equations as (18) - (20).

The case with m = 1 is simple. For v > k, the conditions for qE = 1 and qNE = 1

remain the same.

Proof of Lemma 7. Let (i; j) denote the intermediary�s stocking policy for man-

ufacturer i and manufacturer j of a product. Let i; j 2 f�;E;NEg, where � means
the intermediary does not stock the manufacturer�s product, E means it contracts with

the manufacturer exclusively, and NE means it contracts with the manufacturer non-

exclusively.

In the main text we already proved results (i) and (ii) which specify the compensation

in the cases of (NE;NE) and (E;E), respectively. We now derive compensation in the re-

maining cases and then prove result (iii). First, consider (�;E) and (E; �). If the relevant

manufacturer accepts the exclusive contract, it earns 0 directly from consumers, whereas if

it rejects it earns �
2
F (v) since consumers with s < v will randomly pick one manufacturer

to visit. Hence, the manufacturer needs to be compensated by �
2
F (v). Second, consider

(�;NE) and (NE; �). If the relevant manufacturer accepts the non-exclusive contract, it

earns max
�
0; 1

2
� [F (v)� F (k)]

	
directly from consumers, whereas if it rejects it earns

1
2
�F (v). Therefore, it needs to be compensated by 1

2
�F (min fv; kg). Third, consider

(E;NE). If manufacturer i accepts the exclusive contract, it earns 0 directly from con-

sumers, whereas if it rejects it earns max
�
0; 1

2
� [F (v)� F (k)]

	
. Manufacturer j earns

max f0; � [F (v)� F (k)]g regardless of whether it accepts or rejects the non-exclusive
contract. Hence, total compensation is max

�
0; 1

2
� [F (v)� F (k)]

	
. (The same is true for

the case of (NE;E).) Notice that in all three cases, compensation is (weakly) higher than

that in the case of (NE;NE), but the e¤ect on the search constraint (26) is the same

because all the options lead to q = 1 and qE = 0. As a result, these cases are dominated

by (NE;NE). (When v < k, (E;NE) and (NE;E) are weakly dominated.)
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